Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingang Huang is active.

Publication


Featured researches published by Jingang Huang.


Nature Medicine | 2015

Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis

Katrin Palumbo-Zerr; Pawel Zerr; Alfiya Distler; Judith Fliehr; Rossella Mancuso; Jingang Huang; Dirk Mielenz; Michal Tomcik; Barbara G. Fürnrohr; Carina Scholtysek; Clara Dees; Christian Beyer; Gerhard Krönke; Daniel Metzger; Oliver Distler; Georg Schett; Jörg H W Distler

Mesenchymal responses are an essential aspect of tissue repair. Failure to terminate this repair process correctly, however, results in fibrosis and organ dysfunction. Therapies that block fibrosis and restore tissue homeostasis are not yet available for clinical use. Here we characterize the nuclear receptor NR4A1 as an endogenous inhibitor of transforming growth factor-β (TGF-β) signaling and as a potential target for anti-fibrotic therapies. NR4A1 recruits a repressor complex comprising SP1, SIN3A, CoREST, LSD1, and HDAC1 to TGF-β target genes, thereby limiting pro-fibrotic TGF-β effects. Even though temporary upregulation of TGF-β in physiologic wound healing induces NR4A1 expression and thereby creates a negative feedback loop, the persistent activation of TGF-β signaling in fibrotic diseases uses AKT- and HDAC-dependent mechanisms to inhibit NR4A1 expression and activation. Small-molecule NR4A1 agonists can overcome this lack of active NR4A1 and inhibit experimentally-induced skin, lung, liver, and kidney fibrosis in mice. Our data demonstrate a regulatory role of NR4A1 in TGF-β signaling and fibrosis, providing the first proof of concept for targeting NR4A1 in fibrotic diseases.


Annals of the Rheumatic Diseases | 2013

Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis

Marlene Krämer; Clara Dees; Jingang Huang; Inga Schlottmann; Katrin Palumbo-Zerr; Pawel Zerr; Kolja Gelse; Christian Beyer; Alfiya Distler; Victor E Marquez; Oliver Distler; Georg Schett; Jörg H W Distler

Objectives Epigenetic modifications such as DNA methylation and histone acetylation have been implicated in the pathogenesis of systemic sclerosis. However, histone methylation has not been investigated so far. We therefore aimed to evaluate the role of the trimethylation of histone H3 on lysine 27 (H3K27me3) on fibroblast activation and fibrosis. Methods H3K27me3 was inhibited by 3-deazaneplanocin A (DZNep) in cultured fibroblasts and in two murine models of dermal fibrosis. Fibrosis was analysed by assessment of the dermal thickening, determination of the hydroxyproline content and by quantification of the numbers of myofibroblasts. The expression of fos-related antigen 2 (fra-2) was assessed by real-time PCR, western blot and immunohistochemistry and modulated by siRNA. Results Inhibition of H3K27me3 stimulated the release of collagen in cultured fibroblasts in a time and dose-dependent manner. Treatment with DZNep exacerbated fibrosis induced by bleomycin or by overexpression of a constitutively active transforming growth factor β receptor type I. Moreover, treatment with DZNep alone was sufficient to induce fibrosis. Inhibition of H3K27me3 induced the expression of the profibrotic transcription factor fra-2 in vitro and in vivo. Knockdown of fra-2 completely prevented the profibrotic effects of DZNep. Conclusions These data demonstrate a novel role of H3 Lys27 histone methylation in fibrosis. In contrast to other epigenetic modifications such as DNA methylation and histone acetylation, H3 Lys27 histone methylation acts as a negative regulator of fibroblast activation in vitro and in vivo by repressing the expression of fra-2.


Annals of the Rheumatic Diseases | 2013

Inactivation of tankyrases reduces experimental fibrosis by inhibiting canonical Wnt signalling

Alfiya Distler; Lisa Deloch; Jingang Huang; Clara Dees; Neng-Yu Lin; Katrin Palumbo-Zerr; Christian Beyer; Alexander Weidemann; Oliver Distler; Georg Schett; Jörg H W Distler

Objectives Canonical Wnt signalling has recently emerged as a key mediator of fibroblast activation and tissue fibrosis in systemic sclerosis. Here, we investigated tankyrases as novel molecular targets for inhibition of canonical Wnt signalling in fibrotic diseases. Methods The antifibrotic effects of the tankyrase inhibitor XAV-939 or of siRNA-mediated knockdown of tankyrases were evaluated in the mouse models of bleomycin-induced dermal fibrosis and in experimental fibrosis induced by adenoviral overexpression of a constitutively active TGF-β receptor I (Ad-TBRI). Results Inactivation of tankyrases prevented the activation of canonical Wnt signalling in experimental fibrosis and reduced the nuclear accumulation of β-catenin and the mRNA levels of the target gene c-myc. Treatment with XAV-939 or siRNA-mediated knockdown of tankyrases in the skin effectively reduced bleomycin-induced dermal thickening, differentiation of resting fibroblasts into myofibroblasts and accumulation of collagen. Potent antifibrotic effects were also observed in Ad-TBRI driven skin fibrosis. Inhibition of tankyrases was not limited by local or systemic toxicity. Conclusions Inactivation of tankyrases effectively abrogated the activation of canonical Wnt signalling and demonstrated potent antifibrotic effects in well-tolerated doses. Thus, tankyrases might be candidates for targeted therapies in fibrotic diseases.


Annals of the Rheumatic Diseases | 2015

Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFβ signalling

Christian Beyer; Christoph Zenzmaier; Katrin Palumbo-Zerr; Rossella Mancuso; Alfiya Distler; Clara Dees; Pawel Zerr; Jingang Huang; Christiane Maier; Milena L Pachowsky; Andreas Friebe; Peter Sandner; Oliver Distler; Georg Schett; Peter Berger; Jörg H W Distler

Objectives We have previously described the antifibrotic role of the soluble guanylate cyclase (sGC). The mode of action, however, remained elusive. In the present study, we describe a novel link between sGC signalling and transforming growth factor β (TGFβ) signalling that mediates the antifibrotic effects of the sGC. Methods Human fibroblasts and murine sGC knockout fibroblasts were treated with the sGC stimulator BAY 41-2272 or the stable cyclic guanosine monophosphate (cGMP) analogue 8-Bromo-cGMP and stimulated with TGFβ. sGC knockout fibroblasts were isolated from sGCIfl/fl mice, and recombination was induced by Cre-adenovirus. In vivo, we studied the antifibrotic effects of BAY 41-2272 in mice overexpressing a constitutively active TGF-β1 receptor. Results sGC stimulation inhibited TGFβ-dependent fibroblast activation and collagen release. sGC knockout fibroblasts confirmed that the sGC is essential for the antifibrotic effects of BAY 41-2272. Furthermore, 8-Bromo-cGMP reduced TGFβ-dependent collagen release. While nuclear p-SMAD2 and 3 levels, SMAD reporter activity and transcription of classical TGFβ target genes remained unchanged, sGC stimulation blocked the phosphorylation of ERK. In vivo, sGC stimulation inhibited TGFβ-driven dermal fibrosis but did not change p-SMAD2 and 3 levels and TGFβ target gene expression, confirming that non-canonical TGFβ pathways mediate the antifibrotic sGC activity. Conclusions We elucidated the antifibrotic mode of action of the sGC that increases cGMP levels, blocks non-canonical TGFβ signalling and inhibits experimental fibrosis. Since sGC stimulators have shown excellent efficacy and tolerability in phase 3 clinical trials for pulmonary arterial hypertension, they may be further developed for the simultaneous treatment of fibrosis and vascular disease in systemic sclerosis.


Annals of the Rheumatic Diseases | 2016

Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis

Pawel Zerr; Katrin Palumbo-Zerr; Jingang Huang; Michal Tomcik; Barbora Šumová; Oliver Distler; Georg Schett; Jörg H W Distler

Background Sirt1 is a member of the sirtuin family of proteins. Sirt1 is a class III histone deacetylase with important regulatory roles in transcription, cellular differentiation, proliferation and metabolism. As aberrant epigenetic modifications have been linked to the pathogenesis of systemic sclerosis (SSc), we aimed to investigate the role of Sirt1 in fibroblast activation. Methods Sirt1 expression was analysed by real-time PCR, western blot and immunohistochemistry. Sirt1 signalling was modulated with the Sirt1 agonist resveratrol and by fibroblast-specific knockout. The role of Sirt1 was evaluated in bleomycin-induced skin fibrosis and in mice overexpressing a constitutively active transforming growth factor-β (TGF-β) receptor I (TBRIact). Results The expression of Sirt1 was decreased in patients with SSc and in experimental fibrosis in a TGF-β-dependent manner. Activation of Sirt1 potentiated the profibrotic effects of TGF-β with increased Smad reporter activity, elevated transcription of TGF-β target genes and enhanced release of collagen. In contrast, knockdown of Sirt1 inhibited TGF-β/SMAD signalling and reduced release of collagen in fibroblasts. Consistently, mice with fibroblast-specific knockdown of Sirt1 were less susceptible to bleomycin- or TBRIact-induced fibrosis. Conclusions We identified Sirt1 as a crucial regulator of TGF-β/Smad signalling in SSc. Although Sirt1 is downregulated, this decrease is not sufficient to counterbalance the excessive activation of TGF-β signalling in SSc. However, augmentation of this endogenous regulatory mechanism, for example, by knockdown of Sirt1, can effectively inhibit TGF-β signalling and exerts potent antifibrotic effects. Sirt1 may thus be a key regulator of fibroblast activation in SSc.


Annals of the Rheumatic Diseases | 2015

Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis

Jingang Huang; Christian Beyer; Katrin Palumbo-Zerr; Yun Zhang; Andreas Ramming; Alfiya Distler; Kolja Gelse; Oliver Distler; Georg Schett; Lutz Wollin; Jörg H W Distler

Background Nintedanib is a tyrosine kinase inhibitor that has recently been shown to slow disease progression in idiopathic pulmonary fibrosis in two replicate phase III clinical trials. The aim of this study was to analyse the antifibrotic effects of nintedanib in preclinical models of systemic sclerosis (SSc) and to provide a scientific background for clinical trials in SSc. Methods The effects of nintedanib on migration, proliferation, myofibroblast differentiation and release of extracellular matrix of dermal fibroblasts were analysed by microtitre tetrazolium and scratch assays, stress fibre staining, qPCR and SirCol assays. The antifibrotic effects of nintedanib were evaluated in bleomycin-induced skin fibrosis, in a murine sclerodermatous chronic graft-versus-host disease model and in tight-skin-1 mice. Results Nintedanib dose-dependently reduced platelet-derived growth factor-induced and transforming growth factor-β-induced proliferation and migration as well as myofibroblast differentiation and collagen release of dermal fibroblasts from patients with and healthy individuals. Nintedanib also inhibited the endogenous activation of SSc fibroblasts. Nintedanib prevented bleomycin-induced skin fibrosis in a dose-dependent manner and was also effective in the treatment of established fibrosis. Moreover, treatment with nintedanib ameliorated fibrosis in the chronic graft-versus-host disease model and in tight-skin-1 mice in well-tolerated doses. Conclusions We demonstrate that nintedanib effectively inhibits the endogenous as well as cytokine-induced activation of SSc fibroblasts and exerts potent antifibrotic effects in different complementary mouse models of SSc. These data have direct translational implications for clinical trials with nintedanib in SSc.


Annals of the Rheumatic Diseases | 2015

Vitamin D receptor regulates TGF-β signalling in systemic sclerosis

Pawel Zerr; Stefan Vollath; Katrin Palumbo-Zerr; Michal Tomcik; Jingang Huang; Alfiya Distler; Christian Beyer; Clara Dees; Kolja Gela; Oliver Distler; Georg Schett; Jörg H W Distler

BACKGROUND Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily. Its ligand, 1,25-(OH)2D, is a metabolically active hormone derived from vitamin D3. The levels of vitamin D3 are decreased in patients with systemic sclerosis (SSc). Here, we aimed to analyse the role of VDR signalling in fibrosis. METHODS VDR expression was analysed in SSc skin, experimental fibrosis and human fibroblasts. VDR signalling was modulated by siRNA and with the selective agonist paricalcitol. The effects of VDR on Smad signalling were analysed by reporter assays, target gene analyses and coimmunoprecipitation. The effects of paricalcitol were evaluated in the models of bleomycin-induced fibrosis and fibrosis induced by overexpression of a constitutively active transforming growth factor-β (TGF-β) receptor I (TBRI(CA)). RESULTS VDR expression was decreased in fibroblasts of SSc patients and murine models of SSc in a TGF-β-dependent manner. Knockdown of VDR enhanced the sensitivity of fibroblasts towards TGF-β. In contrast, activation of VDR by paricalcitol reduced the stimulatory effects of TGF-β on fibroblasts and inhibited collagen release and myofibroblast differentiation. Paricalcitol stimulated the formation of complexes between VDR and phosphorylated Smad3 in fibroblasts to inhibit Smad-dependent transcription. Preventive and therapeutic treatment with paricalcitol exerted potent antifibrotic effects and ameliorated bleomycin- as well as TBRI(CA)-induced fibrosis. CONCLUSIONS We characterise VDR as a negative regulator of TGF-β/Smad signalling. Impaired VDR signalling with reduced expression of VDR and decreased levels of its ligand may thus contribute to hyperactive TGF-β signalling and aberrant fibroblast activation in SSc.


Annals of the Rheumatic Diseases | 2015

Activation of liver X receptors inhibits experimental fibrosis by interfering with interleukin-6 release from macrophages.

Christian Beyer; Jingang Huang; Jürgen Beer; Yun Zhang; Katrin Palumbo-Zerr; Pawel Zerr; Alfiya Distler; Clara Dees; Christiane Maier; Louis Munoz; Gerhard Krönke; Stefan Uderhardt; Oliver Distler; Simon Arnett Jones; Stefan Rose-John; Tamas Oravecz; Georg Schett; Jörg H W Distler

Objectives To investigate the role of liver X receptors (LXRs) in experimental skin fibrosis and evaluate their potential as novel antifibrotic targets. Methods We studied the role of LXRs in bleomycin-induced skin fibrosis, in the model of sclerodermatous graft-versus-host disease (sclGvHD) and in tight skin-1 (Tsk-1) mice, reflecting different subtypes of fibrotic disease. We examined both LXR isoforms using LXRα-, LXRβ- and LXR-α/β-double-knockout mice. Finally, we investigated the effects of LXRs on fibroblasts and macrophages to establish the antifibrotic mode of action of LXRs. Results LXR activation by the agonist T0901317 had antifibrotic effects in bleomycin-induced skin fibrosis, in the sclGvHD model and in Tsk-1 mice. The antifibrotic activity of LXRs was particularly prominent in the inflammation-driven bleomycin and sclGvHD models. LXRα-, LXRβ- and LXRα/β-double-knockout mice showed a similar response to bleomycin as wildtype animals. Low levels of the LXR target gene ABCA-1 in the skin of bleomycin-challenged and control mice suggested a low baseline activation of the antifibrotic LXR signalling, which, however, could be specifically activated by T0901317. Fibroblasts were not the direct target cells of LXRs agonists, but LXR activation inhibited fibrosis by interfering with infiltration of macrophages and their release of the pro-fibrotic interleukin-6. Conclusions We identified LXRs as novel targets for antifibrotic therapies, a yet unknown aspect of these nuclear receptors. Our data suggest that LXR activation might be particularly effective in patients with inflammatory disease subtypes. Activation of LXRs interfered with the release of interleukin-6 from macrophages and, thus, inhibited fibroblast activation and collagen release.


Annals of the Rheumatic Diseases | 2014

Combined inhibition of morphogen pathways demonstrates additive antifibrotic effects and improved tolerability

Alfiya Distler; Veronika Lang; Tina Del Vecchio; Jingang Huang; Yun Zhang; Christian Beyer; Neng-Yu Lin; Katrin Palumbo-Zerr; Oliver Distler; Georg Schett; Jörg H W Distler

Objectives The morphogen pathways Hedgehog, Wnt and Notch are attractive targets for antifibrotic therapies in systemic sclerosis. Interference with stem cell regeneration, however, may complicate the use of morphogen pathway inhibitors. We therefore tested the hypothesis that combination therapies with low doses of Hedgehog, Wnt and Notch inhibitors maybe safe and effective for the treatment of fibrosis. Methods Skin fibrosis was induced by bleomycin and by overexpression of a constitutively active TGF-β receptor type I. Adverse events were assessed by clinical monitoring, pathological evaluation and quantification of Lgr5-positive intestinal stem cells. Results Inhibition of Hedgehog, Wnt and Notch signalling dose-dependently ameliorated bleomycin-induced and active TGF-β receptor type I-induced fibrosis. Combination therapies with low doses of Hedgehog/Wnt inhibitors or Hedgehog/Notch inhibitors demonstrated additive antifibrotic effects in preventive as well as in therapeutic regimes. Combination therapies were well tolerated. In contrast with high dose monotherapies, combination therapies did not reduce the number of Lgr5 positive intestinal stem cells. Conclusions Combined inhibition of morphogen pathways exerts additive antifibrotic effects. Combination therapies are well tolerated and, in contrast to high dose monotherapies, may not impair stem cell renewal. Combined targeting of morphogen pathways may thus help to overcome dose-limiting toxicity of Hedgehog, Wnt and Notch signalling.


Annals of the Rheumatic Diseases | 2017

Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis

Jingang Huang; Christiane Maier; Yun Zhang; Clara Dees; Christian Beyer; Ulrike Harre; Chih-Wei Chen; Oliver Distler; Georg Schett; Lutz Wollin; Jörg H W Distler

Background Nintedanib is an inhibitor targeting platelet-derived growth factor receptor, fibroblast growth factor receptor and vascular endothelial growth factor receptor tyrosine kinases that has recently been approved for the treatment of idiopathic pulmonary fibrosis. The aim of this study was to analyse the effects of nintedanib in the fos-related antigen-2 (Fra2) mouse model of systemic sclerosis (SSc). Methods The effects of nintedanib on pulmonary arterial hypertension with proliferation of pulmonary vascular smooth muscle cells (PVSMCs) and luminal occlusion, on microvascular disease with apoptosis of microvascular endothelial cells (MVECs) and on fibroblast activation with myofibroblast differentiation and accumulation of extracellular matrix were analysed. We also studied the effects of nintedanib on the levels of key mediators involved in the pathogenesis of SSc and on macrophage polarisation. Results Nintedanib inhibited proliferation of PVSMCs and prevented thickening of the vessel walls and luminal occlusion of pulmonary arteries. Treatment with nintedanib also inhibited apoptosis of MVECs and blunted the capillary rarefaction in Fra2-transgenic mice. These effects were associated with a normalisation of the serum levels of vascular endothelial growth factor in Fra2 mice on treatment with nintedanib. Nintedanib also effectively blocked myofibroblast differentiation and reduced pulmonary, dermal and myocardial fibrosis in Fra2-transgenic mice. The antifibrotic effects of nintedanib were associated with impaired M2 polarisation of monocytes and reduced numbers of M2 macrophages. Conclusion Nintedanib targets core features of SSc in Fra2-transgenic mice and ameliorates histological features of pulmonary arterial hypertension, destructive microangiopathy and pulmonary and dermal fibrosis. These data might have direct implications for the ongoing phase III clinical trial with nintedanib in SSc-associated interstitial lung disease.

Collaboration


Dive into the Jingang Huang's collaboration.

Top Co-Authors

Avatar

Christian Beyer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Georg Schett

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Katrin Palumbo-Zerr

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg H W Distler

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Clara Dees

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Alfiya Distler

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Pawel Zerr

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Yun Zhang

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

J. Distler

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge