Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingqiu Mao is active.

Publication


Featured researches published by Jingqiu Mao.


Journal of Geophysical Research | 2008

HOx chemistry during INTEX‐A 2004: Observation, model calculation, and comparison with previous studies

Xinrong Ren; J. R. Olson; J. H. Crawford; William H. Brune; Jingqiu Mao; Robert B. Long; Zhong Chen; G. Chen; Melody A. Avery; Glen W. Sachse; J. Barrick; Glenn S. Diskin; L. Greg Huey; Alan Fried; R. C. Cohen; Brian G. Heikes; Paul O. Wennberg; Hanwant B. Singh; D. R. Blake; Richard E. Shetter

OH and HO_2 were measured with the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) as part of a large measurement suite from the NASA DC-8 aircraft during the Intercontinental Chemical Transport Experiment-A (INTEX-A). This mission, which was conducted mainly over North America and the western Atlantic Ocean in summer 2004, was an excellent test of atmospheric oxidation chemistry. The HOx results from INTEX-A are compared to those from previous campaigns and to results for other related measurements from INTEX-A. Throughout the troposphere, observed OH was generally 0.95 of modeled OH; below 8 km, observed HO_2 was generally 1.20 of modeled HO_2. This observed-to-modeled comparison is similar to that for TRACE-P, another midlatitude study for which the median observed-to-modeled ratio was 1.08 for OH and 1.34 for HO_2, and to that for PEM-TB, a tropical study for which the median observed-to-modeled ratio was 1.17 for OH and 0.97 for HO_2. HO_2 behavior above 8 km was markedly different. The observed-to-modeled HO_2 ratio increased from ∼1.2 at 8 km to ∼3 at 11 km with the observed-to-modeled ratio correlating with NO. Above 8 km, the observed-to-modeled HO_2 and observed NO were both considerably greater than observations from previous campaigns. In addition, the observed-to-modeled HO_2/OH, which is sensitive to cycling reactions between OH and HO_2, increased from ∼1.5 at 8 km to almost 3.5 at 11 km. These discrepancies suggest a large unknown HO_x source and additional reactants that cycle HO_x from OH to HO_2. In the continental planetary boundary layer, the observed-to-modeled OH ratio increased from 1 when isoprene was less than 0.1 ppbv to over 4 when isoprene was greater than 2 ppbv, suggesting that forests throughout the United States are emitting unknown HO_x sources. Progress in resolving these discrepancies requires a focused research activity devoted to further examination of possible unknown OH sinks and HO_x sources.


Environmental Science & Technology | 2013

Observational insights into aerosol formation from isoprene.

David R. Worton; Jason D. Surratt; Brian W. Lafranchi; A. W. H. Chan; Yunliang Zhao; R. J. Weber; Jeong Hoo Park; J. B. Gilman; Joost A. de Gouw; Changhyoun Park; Gunnar W. Schade; Melinda R. Beaver; Jason M. St. Clair; John D. Crounse; Paul O. Wennberg; Glenn M. Wolfe; Sara Harrold; Joel A. Thornton; Delphine K. Farmer; Kenneth S. Docherty; Michael J. Cubison; Jose L. Jimenez; Amanda A. Frossard; Lynn M. Russell; Kasper Kristensen; Marianne Glasius; Jingqiu Mao; Xinrong Ren; William H. Brune; E. C. Browne

Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO2) and hydroperoxyl (HO2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (F(MAE formation)). The strong temperature dependence of F(MAE formation) helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS; ~1 ng m(-3)) and MAE-derived organosulfates (MAE-OS; ~1 ng m(-3)) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (~20 ng m(-3)) relative to MAE-OS (<0.0005 ng m(-3)) at higher temperatures (higher isoprene concentrations). A kinetic model of IEPOX and MAE loss showed that MAE forms 10-100 times more ring-opening products than IEPOX and that both are strongly dependent on aerosol water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NOx, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source.


Atmospheric Chemistry and Physics | 2016

Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

Nga L. Ng; Steven S. Brown; A. T. Archibald; Elliot Atlas; R. C. Cohen; J. N. Crowley; Douglas A. Day; Neil M. Donahue; Juliane L. Fry; Hendrik Fuchs; Robert J. Griffin; Marcelo I. Guzman; Hartmut Herrmann; Alma Hodzic; Yoshiteru Iinuma; Jose L. Jimenez; Astrid Kiendler-Scharr; Ben H. Lee; Deborah Luecken; Jingqiu Mao; Robert McLaren; Anke Mutzel; Hans D. Osthoff; Bin Ouyang; B. Picquet-Varrault; U. Platt; Havala O. T. Pye; Yinon Rudich; Rebecca H. Schwantes; Manabu Shiraiwa

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.


Atmospheric Chemistry and Physics | 2016

Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC 4 RS) and ground-based (SOAS) observations in the Southeast US

Jenny A. Fisher; Daniel J. Jacob; Katherine R. Travis; Patrick S. Kim; Eloise A. Marais; Christopher Miller; Karen Yu; Lei Zhu; Robert M. Yantosca; Melissa P. Sulprizio; Jingqiu Mao; Paul O. Wennberg; John D. Crounse; Alex P. Teng; Tran B. Nguyen; Jason M. St. Clair; R. C. Cohen; Paul M. Romer; Benjamin A. Nault; P. J. Wooldridge; Jose L. Jimenez; Pedro Campuzano-Jost; Douglas A. Day; Weiwei Hu; Paul B. Shepson; Fulizi Xiong; D. R. Blake; Allen H. Goldstein; Pawel K. Misztal; T. F. Hanisco

Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with ∼25 × 25 km2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50% of observed RONO2 in surface air, and we find that another 10% is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10% of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60% of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20% by photolysis to recycle NOx and 15% by dry deposition. RONO2 production accounts for 20% of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline.


Atmospheric Measurement Techniques | 2016

Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013

Carsten Warneke; M. Trainer; Joost A. de Gouw; D. D. Parrish; D. W. Fahey; A. R. Ravishankara; Ann M. Middlebrook; C. A. Brock; James M. Roberts; Steven S. Brown; J. A. Neuman; D. A. Lack; Daniel Law; G. Hübler; Iliana Pollack; Steven Sjostedt; Thomas B. Ryerson; J. B. Gilman; Jin Liao; John S. Holloway; J. Peischl; J. B. Nowak; K. C. Aikin; Kyung-Eun Min; Rebecca A. Washenfelder; Martin Graus; Mathew Richardson; Milos Z. Markovic; Nick L. Wagner; André Welti

Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.


Atmospheric Chemistry and Physics | 2014

Biomass burning influence on high-latitude tropospheric ozone and reactive nitrogen in summer 2008: a multi-model analysis based on POLMIP simulations

S. R. Arnold; Louisa Kent Emmons; S. A. Monks; Kathy S. Law; David A. Ridley; Solène Turquety; Simone Tilmes; Jennie L. Thomas; Johannes Flemming; V. Huijnen; Jingqiu Mao; Bryan N. Duncan; Stephen D. Steenrod; Y. Yoshida; Joakim Langner; Y. Long

Abstract. We have evaluated tropospheric ozone enhancement in air dominated by biomass burning emissions at high latitudes (> 50° N) in July 2008, using 10 global chemical transport model simulations from the POLMIP multi-model comparison exercise. In model air masses dominated by fire emissions, ΔO3/ΔCO values ranged between 0.039 and 0.196 ppbv ppbv−1 (mean: 0.113 ppbv ppbv−1) in freshly fire-influenced air, and between 0.140 and 0.261 ppbv ppbv−1 (mean: 0.193 ppbv) in more aged fire-influenced air. These values are in broad agreement with the range of observational estimates from the literature. Model ΔPAN/ΔCO enhancement ratios show distinct groupings according to the meteorological data used to drive the models. ECMWF-forced models produce larger ΔPAN/ΔCO values (4.47 to 7.00 pptv ppbv−1) than GEOS5-forced models (1.87 to 3.28 pptv ppbv−1), which we show is likely linked to differences in efficiency of vertical transport during poleward export from mid-latitude source regions. Simulations of a large plume of biomass burning and anthropogenic emissions exported from towards the Arctic using a Lagrangian chemical transport model show that 4-day net ozone change in the plume is sensitive to differences in plume chemical composition and plume vertical position among the POLMIP models. In particular, Arctic ozone evolution in the plume is highly sensitive to initial concentrations of PAN, as well as oxygenated VOCs (acetone, acetaldehyde), due to their role in producing the peroxyacetyl radical PAN precursor. Vertical displacement is also important due to its effects on the stability of PAN, and subsequent effect on NOx abundance. In plumes where net ozone production is limited, we find that the lifetime of ozone in the plume is sensitive to hydrogen peroxide loading, due to the production of HOx from peroxide photolysis, and the key role of HO2 + O3 in controlling ozone loss. Overall, our results suggest that emissions from biomass burning lead to large-scale photochemical enhancement in high-latitude tropospheric ozone during summer.


Journal of Geophysical Research | 2016

Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3

M. C. Barth; Megan M. Bela; Alan Fried; Paul O. Wennberg; John D. Crounse; J. M. St. Clair; Nicola J. Blake; D. R. Blake; Cameron R. Homeyer; William H. Brune; L. Zhang; Jingqiu Mao; Xinrong Ren; T. B. Ryerson; I. B. Pollack; J. Peischl; R. C. Cohen; Benjamin A. Nault; L. G. Huey; Xiaoxi Liu; C. A. Cantrell

One of the objectives of the Deep Convective Clouds and Chemistry (DC3) field experiment was to determine the scavenging of soluble trace gases by thunderstorms. We present an analysis of scavenging of hydrogen peroxide (H_2O_2) and methyl hydrogen peroxide (CH_3OOH) from six DC3 cases that occurred in Oklahoma and northeast Colorado. Estimates of H_2O_2 scavenging efficiencies are comparable to previous studies ranging from 79 to 97% with relative uncertainties of 5–25%. CH_3OOH scavenging efficiencies ranged from 12 to 84% with relative uncertainties of 18–558%. The wide range of CH_3OOH scavenging efficiencies is surprising, as previous studies suggested that CH_3OOH scavenging efficiencies would be <10%. Cloud chemistry model simulations of one DC3 storm produced CH_3OOH scavenging efficiencies of 26–61% depending on the ice retention factor of CH_3OOH during cloud drop freezing, suggesting ice physics impacts CH_3OOH scavenging. The highest CH_3OOH scavenging efficiencies occurred in two severe thunderstorms, but there is no obvious correlation between the CH_3OOH scavenging efficiency and the storm thermodynamic environment. We found a moderate correlation between the estimated entrainment rates and CH_3OOH scavenging efficiencies. Changes in gas-phase chemistry due to lightning production of nitric oxide and aqueous-phase chemistry have little effect on CH_3OOH scavenging efficiencies. To determine why CH_3OOH can be substantially removed from storms, future studies should examine effects of entrainment rate, retention of CH_3OOH in frozen cloud particles during drop freezing, and lightning-NO_x production.


Journal of Geophysical Research | 2016

An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere

Julie M. Nicely; Daniel C. Anderson; T. Canty; R. J. Salawitch; Glenn M. Wolfe; Eric C. Apel; S. R. Arnold; Elliot Atlas; Nicola J. Blake; James F. Bresch; Teresa L. Campos; Russell R. Dickerson; Bryan N. Duncan; Louisa Kent Emmons; M. J. Evans; Rafael P. Fernandez; Johannes Flemming; Samuel R. Hall; T. F. Hanisco; Shawn B. Honomichl; Rebecca S. Hornbrook; V. Huijnen; Lisa Kaser; Douglas E. Kinnison; Jean-Francois Lamarque; Jingqiu Mao; S. A. Monks; D. D. Montzka; Laura L. Pan; Daniel D. Riemer

Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January–February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O3 reasonably well, they underestimate NOx (NO + NO2) by a factor of 2, resulting in OHCOL ~30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January–February 2014 observed levels of O3 and NO were considerably larger than previously reported values in the TWP.


Journal of Physical Chemistry A | 2016

Observational constraints on the oxidation of NOx in the upper troposphere

Benjamin A. Nault; C. Garland; P. J. Wooldridge; William H. Brune; Pedro Campuzano-Jost; John D. Crounse; Douglas A. Day; Jack E. Dibb; Samuel R. Hall; L. Gregory Huey; Jose L. Jimenez; Xiaoxi Liu; Jingqiu Mao; Tomas Mikoviny; J. Peischl; Ilana B. Pollack; Xinrong Ren; Thomas B. Ryerson; Eric Scheuer; Kirk Ullmann; Paul O. Wennberg; Armin Wisthaler; Li Zhang; R. C. Cohen

NOx (NOx ≡ NO + NO2) regulates O3 and HOx (HOx ≡ OH + HO2) concentrations in the upper troposphere. In the laboratory, it is difficult to measure rates and branching ratios of the chemical reactions affecting NOx at the low temperatures and pressures characteristic of the upper troposphere, making direct measurements in the atmosphere especially useful. We report quasi-Lagrangian observations of the chemical evolution of an air parcel following a lightning event that results in high NOx concentrations. These quasi-Lagrangian measurements obtained during the Deep Convective Clouds and Chemistry experiment are used to characterize the daytime rates for conversion of NOx to different peroxy nitrates, the sum of alkyl and multifunctional nitrates, and HNO3. We infer the following production rate constants [in (cm(3)/molecule)/s] at 225 K and 230 hPa: 7.2(±5.7) × 10(-12) (CH3O2NO2), 5.1(±3.1) × 10(-13) (HO2NO2), 1.3(±0.8) × 10(-11) (PAN), 7.3(±3.4) × 10(-12) (PPN), and 6.2(±2.9) × 10(-12) (HNO3). The HNO3 and HO2NO2 rates are ∼ 30-50% lower than currently recommended whereas the other rates are consistent with current recommendations to within ±30%. The analysis indicates that HNO3 production from the HO2 and NO reaction (if any) must be accompanied by a slower rate for the reaction of OH with NO2, keeping the total combined rate for the two processes at the rate reported for HNO3 production above.


Journal of Geophysical Research | 2016

Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States

Jingyi Li; Jingqiu Mao; Kyung-Eun Min; Rebecca A. Washenfelder; Steven S. Brown; Jennifer Kaiser; Frank N. Keutsch; R. Volkamer; Glenn M. Wolfe; T. F. Hanisco; Ilana B. Pollack; Thomas B. Ryerson; Martin Graus; J. B. Gilman; Carsten Warneke; Joost A. de Gouw; Ann M. Middlebrook; Jin Liao; André Welti; Barron H. Henderson; V. Faye McNeill; Samuel R. Hall; Kirk Ullmann; Leo J. Donner; Fabien Paulot; Larry W. Horowitz

We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10-3, and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 μg m-3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO2). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of IEPOX peroxy radicals (IEPOXOO) with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

Collaboration


Dive into the Jingqiu Mao's collaboration.

Top Co-Authors

Avatar

William H. Brune

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

R. C. Cohen

University of California

View shared research outputs
Top Co-Authors

Avatar

Paul O. Wennberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glenn M. Wolfe

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Top Co-Authors

Avatar

John D. Crounse

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Larry W. Horowitz

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. R. Olson

Langley Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge