Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinmiao Chen is active.

Publication


Featured researches published by Jinmiao Chen.


Immunity | 2015

C-Myb+ Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages

Guillaume Hoeffel; Jinmiao Chen; Yonit Lavin; Donovan Low; Francisca F. Almeida; Peter See; Anna E. Beaudin; Josephine Lum; Ivy Low; E. Camilla Forsberg; Michael Poidinger; Francesca Zolezzi; Anis Larbi; Lai Guan Ng; Jerry Chan; Melanie Greter; Burkhard Becher; Igor M. Samokhvalov; Miriam Merad; Florent Ginhoux

Although classified as hematopoietic cells, tissue-resident macrophages (MFs) arise from embryonic precursors that seed the tissues prior to birth to generate a self-renewing population, which is maintained independently of adult hematopoiesis. Here we reveal the identity of these embryonic precursors using an in utero MF-depletion strategy and fate-mapping of yolk sac (YS) and fetal liver (FL) hematopoiesis. We show that YS MFs are the main precursors of microglia, while most other MFs derive from fetal monocytes (MOs). Both YS MFs and fetal MOs arise from erythro-myeloid progenitors (EMPs) generated in the YS. In the YS, EMPs gave rise to MFs without monocytic intermediates, while EMP seeding the FL upon the establishment of blood circulation acquired c-Myb expression and gave rise to fetal MOs that then seeded embryonic tissues and differentiated into MFs. Thus, adult tissue-resident MFs established from hematopoietic stem cell-independent embryonic precursors arise from two distinct developmental programs.


The Journal of Infectious Diseases | 2011

Persistent Arthralgia Induced by Chikungunya Virus Infection is Associated with Interleukin-6 and Granulocyte Macrophage Colony-Stimulating Factor

Angela Chow; Zhisheng Her; Edward K S Ong; Jinmiao Chen; Frederico Dimatatac; Dyan J. C. Kwek; Timothy Barkham; Henry Yang; Laurent Rénia; Yee Sin Leo; Lisa F. P. Ng

Background. Chikungunya virus (CHIKV) infection induces arthralgia. The involvement of inflammatory cytokines and chemokines has been suggested, but very little is known about their secretion profile in CHIKV-infected patients. Methods. A case-control longitudinal study was performed that involved 30 adult patients with laboratory-confirmed Chikungunya fever. Their profiles of clinical disease, viral load, and immune mediators were investigated. Results. When patients were segregated into high viral load and low viral load groups during the acute phase, those with high viremia had lymphopenia, lower levels of monocytes, neutrophilia, and signs of inflammation. The high viral load group was also characterized by a higher production of pro-inflammatory cytokines, such as interferon-α and interleukin (IL)–6, during the acute phase. As the disease progressed to the chronic phase, IL-17 became detectable. However, persistent arthralgia was associated with higher levels of IL-6 and granulocyte macrophage colony-stimulating factor, whereas patients who recovered fully had high levels of Eotaxin and hepatocyte growth factor. Conclusions. The level of CHIKV viremia during the acute phase determined specific patterns of pro-inflammatory cytokines, which were associated with disease severity. At the chronic phase, levels of IL-6, and granulocyte macrophage colony-stimulating factor found to be associated with persistent arthralgia provide a possible explanation for the etiology of arthralgia that plagues numerous CHIKV-infected patients.


Nature Immunology | 2014

High-dimensional analysis of the murine myeloid cell system

Burkhard Becher; Andreas Schlitzer; Jinmiao Chen; Florian Mair; Hermi Rizal Bin Sumatoh; Karen Wei Weng Teng; Donovan Low; Christiane Ruedl; Paola Riccardi-Castagnoli; Michael Poidinger; Melanie Greter; Florent Ginhoux; Evan W. Newell

Advances in cell-fate mapping have revealed the complexity in phenotype, ontogeny and tissue distribution of the mammalian myeloid system. To capture this phenotypic diversity, we developed a 38-antibody panel for mass cytometry and used dimensionality reduction with machine learning–aided cluster analysis to build a composite of murine (mouse) myeloid cells in the steady state across lymphoid and nonlymphoid tissues. In addition to identifying all previously described myeloid populations, higher-order analysis allowed objective delineation of otherwise ambiguous subsets, including monocyte-macrophage intermediates and an array of granulocyte variants. Using mice that cannot sense granulocyte macrophage–colony stimulating factor GM-CSF (Csf2rb−/−), which have discrete alterations in myeloid development, we confirmed differences in barrier tissue dendritic cells, lung macrophages and eosinophils. The methodology further identified variations in the monocyte and innate lymphoid cell compartment that were unexpected, which confirmed that this approach is a powerful tool for unambiguous and unbiased characterization of the myeloid system.


Immunity | 2016

Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species.

Martin Guilliams; Charles-Antoine Dutertre; Charlotte L. Scott; Naomi McGovern; Dorine Sichien; Svetoslav Chakarov; Sofie Van Gassen; Jinmiao Chen; Michael Poidinger; Sofie De Prijck; Simon Tavernier; Ivy Low; Sergio Erdal Irac; Citra Nurfarah Zaini Mattar; Hermi Rizal Bin Sumatoh; Gillian Low; Tam John Kit Chung; Dedrick Kok Hong Chan; Ker-Kan Tan; Tony Lim Kiat Hon; Even Fossum; Bjarne Bogen; Mahesh Choolani; Jerry Kok Yen Chan; Anis Larbi; Hervé Luche; Sandrine Henri; Yvan Saeys; Evan W. Newell; Bart N. Lambrecht

Summary Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients.


Gut | 2012

Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma

Chew; Jinmiao Chen; D Lee; E Loh; Jmf Lee; Kiat Hon Lim; Achim Weber; K Slankamenac; Rtp Poon; H Yang; Llpj Ooi; Han Chong Toh; Mathias Heikenwalder; Iol Ng; Alessandra Nardin; Jean-Pierre Abastado

Objective Hepatocellular carcinoma (HCC) is a heterogeneous disease with poor prognosis and limited methods for predicting patient survival. The nature of the immune cells that infiltrate tumours is known to impact clinical outcome. However, the molecular events that regulate this infiltration require further understanding. Here the ability of immune genes expressed in the tumour microenvironment to predict disease progression was investigated. Methods Using quantitative PCR, the expression of 14 immune genes in resected tumour tissues from 57 Singaporean patients was analysed. The nearest-template prediction method was used to derive and test a prognostic signature from this training cohort. The signature was then validated in an independent cohort of 98 patients from Hong Kong and Zurich. Intratumoural components expressing these critical immune genes were identified by in situ labelling. Regulation of these genes was analysed in vitro using the HCC cell line SNU-182. Results The identified 14 immune-gene signature predicts patient survival in both the training cohort (p=0.0004 and HR=5.2) and the validation cohort (p=0.0051 and HR=2.5) irrespective of patient ethnicity and disease aetiology. Importantly, it predicts the survival of patients with early disease (stages I and II), for whom classical clinical parameters provide limited information. The lack of predictive power in late disease stages III and IV emphasises that a protective immune microenvironment has to be established early in order to impact disease progression significantly. This signature includes the chemokine genes CXCL10, CCL5 and CCL2, whose expression correlates with markers of T helper 1 (Th1), CD8+ T and natural killer (NK) cells. Inflammatory cytokines (tumour necrosis factor α, interferon γ) and Toll-like receptor 3 ligands stimulate intratumoural production of these chemokines which drive tumour infiltration by T and NK cells, leading to enhanced cancer cell death. Conclusion A 14 immune-gene signature, which identifies molecular cues driving tumour infiltration by lymphocytes, accurately predicts survival of patients with HCC especially in early disease.


Nature Immunology | 2015

Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow

Andreas Schlitzer; V Sivakamasundari; Jinmiao Chen; Hermi Rizal Bin Sumatoh; Jaring Schreuder; Josephine Lum; Benoit Malleret; Sanqian Zhang; Anis Larbi; Francesca Zolezzi; Laurent Rénia; Michael Poidinger; Shalin H. Naik; Evan W. Newell; Paul Robson; Florent Ginhoux

Mouse conventional dendritic cells (cDCs) can be classified into two functionally distinct lineages: the CD8α+ (CD103+) cDC1 lineage, and the CD11b+ cDC2 lineage. cDCs arise from a cascade of bone marrow (BM) DC-committed progenitor cells that include the common DC progenitors (CDPs) and pre-DCs, which exit the BM and seed peripheral tissues before differentiating locally into mature cDCs. Where and when commitment to the cDC1 or cDC2 lineage occurs remains poorly understood. Here we found that transcriptional signatures of the cDC1 and cDC2 lineages became evident at the single-cell level from the CDP stage. We also identified Siglec-H and Ly6C as lineage markers that distinguished pre-DC subpopulations committed to the cDC1 lineage (Siglec-H−Ly6C− pre-DCs) or cDC2 lineage (Siglec-H−Ly6C+ pre-DCs). Our results indicate that commitment to the cDC1 or cDC2 lineage occurs in the BM and not in the periphery.


Immunity | 2015

Human Monocytes Undergo Functional Re-programming during Sepsis Mediated by Hypoxia-Inducible Factor-1α

Irina N. Shalova; Jyue Yuan Lim; Manesh Chittezhath; Annelies Zinkernagel; Federico C. Beasley; Enrique Hernández-Jiménez; Victor Toledano; Carolina Cubillos-Zapata; Annamaria Rapisarda; Jinmiao Chen; Kaibo Duan; Henry Yang; Michael Poidinger; Giovanni Melillo; Victor Nizet; Francisco Arnalich; Eduardo López-Collazo; Subhra K. Biswas

Sepsis is characterized by a dysregulated inflammatory response to infection. Despite studies in mice, the cellular and molecular basis of human sepsis remains unclear and effective therapies are lacking. Blood monocytes serve as the first line of host defense and are equipped to recognize and respond to infection by triggering an immune-inflammatory response. However, the response of these cells in human sepsis and their contribution to sepsis pathogenesis is poorly understood. To investigate this, we performed a transcriptomic, functional, and mechanistic analysis of blood monocytes from patients during sepsis and after recovery. Our results revealed the functional plasticity of monocytes during human sepsis, wherein they transited from a pro-inflammatory to an immunosuppressive phenotype, while enhancing protective functions like phagocytosis, anti-microbial activity, and tissue remodeling. Mechanistically, hypoxia inducible factor-1α (HIF1α) mediated this functional re-programming of monocytes, revealing a potential mechanism for their therapeutic targeting to regulate human sepsis.


Science | 2017

Mapping the human DC lineage through the integration of high-dimensional techniques

Peter See; Charles-Antoine Dutertre; Jinmiao Chen; Patrick Günther; Naomi McGovern; Sergio Erdal Irac; Merry Gunawan; Marc Beyer; Kristian Händler; Kaibo Duan; Hermi Rizal Bin Sumatoh; Nicolas Ruffin; Mabel Jouve; Ester Gea-Mallorquí; Raoul C. M. Hennekam; Tony Kiat Hon Lim; Chan Chung Yip; Ming Wen; Benoit Malleret; Ivy Low; Nurhidaya Binte Shadan; Charlene Foong Shu Fen; Alicia Tay; Josephine Lum; Francesca Zolezzi; Anis Larbi; Michael Poidinger; Jerry Chan; Qingfeng Chen; Laurent Rénia

Tracing development of the dendritic cell lineage Dendritic cells (DCs) are important components of the immune system that form from the bone marrow into two major cell lineages: plasmacytoid DCs and conventional DCs. See et al. applied single-cell RNA sequencing and cytometry by time-of-flight to characterize the developmental pathways of these cells. They identified blood DC precursors that shared surface markers with plasmacytoid DCs but that were functionally distinct. This unsuspected level of complexity in pre-DC populations reveals additional cell types and refines understanding of known cell types. Science, this issue p. eaag3009 In human blood, the immunological dendritic cell lineage contains many predendritic cell populations. INTRODUCTION Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune responses. The human DC population comprises multiple subsets, including plasmacytoid DC (pDC) and two functionally specialized lineages of conventional DC (cDC1 and cDC2), whose origins and differentiation pathways remain incompletely defined. RATIONALE As DC are essential regulators of the immune response in health and disease, potential intervention strategies aiming at manipulation of these cells will require in-depth insights of their origins, the mechanisms that govern their homeostasis, and their functional properties. Here, we employed two unbiased high-dimensional technologies to characterize the human DC lineage from bone marrow to blood. RESULTS We isolated the DC-containing population (Lineage−HLA−DR+CD135+ cells) from human blood and defined the transcriptomes of 710 individual cells using massively parallel single-cell mRNA sequencing. By combining complementary bioinformatic approaches, we identified a small cluster of cells within this population as putative DC precursors (pre-DC). We then confirmed this finding using cytometry by time-of-flight (CyTOF) to simultaneously measure the expression of a panel of 38 different proteins at the single-cell level on Lineage−HLA−DR+ cells and found that pre-DC possessed a CD123+CD33+CD45RA+ phenotype. We confirmed the precursor potential of pre-DC by establishing their potential to differentiate in vitro into cDC1 and cDC2, but not pDC, in the known proportions found in vivo. Interestingly, pre-DC also express classical pDC markers, including CD123, CD303, and CD304. Thus, any previous studies using these markers to identify or isolate pDC will have inadvertently included CD123+CD33+ pre-DC. We provide here new markers that can be used to identify unambiguously pre-DC from pDC, including CD33, CX3CR1, CD2, CD5, and CD327. When CD123+CD33+ pre-DC and CD123+CD33− pDC were isolated separately, we observed that pre-DC have unique functional properties that were previously attributed to pDC. Although pDC remain bona fide interferon-α–producing cells, their reported interleukin-12 (IL-12) production and CD4 T cell allostimulatory capacity can likely be attributed to “contaminating” pre-DC. We then asked whether the pre-DC population contained both uncommitted and committed pre-cDC1 and pre-cDC2 precursors, as recently shown in mice. Using microfluidic single-cell mRNA sequencing (scmRNAseq), we showed that the human pre-DC population contains cells exhibiting transcriptomic priming toward cDC1 and cDC2 lineages. Flow cytometry and in vitro DC differentiation experiments further identified CD123+CADM1−CD1c− putative uncommitted pre-DC, alongside CADM1+CD1c− pre-cDC1 and CADM1−CD1c+ pre-cDC2. Finally, we found that pre-DC subsets expressed T cell costimulatory molecules and induced comparable proliferation and polarization of naïve CD4 T cells as adult DC. However, exposure to the Toll-like receptor 9 (TLR9) ligand CpG triggered IL-12p40 and tumor necrosis factor–α production by early pre-DC, pre-cDC1, and pre-cDC2, in contrast to differentiated cDC1 and cDC2, which do not express TLR9. CONCLUSION Using unsupervised scmRNAseq and CyTOF analyses, we have unraveled the complexity of the human DC lineage at the single-cell level, revealing a continuous process of differentiation that starts in the bone marrow (BM) with common DC progenitors (CDP), diverges at the point of emergence of pre-DC and pDC potential, and culminates in maturation of both lineages in the blood and spleen. The pre-DC compartment contains functionally and phenotypically distinct lineage-committed subpopulations, including one early uncommitted CD123+ pre-DC subset and two CD45RA+CD123lo lineage-committed subsets. The discovery of multiple committed pre-DC populations with unique capabilities opens promising new avenues for the therapeutic exploitation of DC subset-specific targeting. Human DC emerge from BM CDP, diverge at the point of emergence of pre-DC and pDC potential, and culminate in maturation of both lineages in the blood. The pre-DC compartment further differentiates into functionally and phenotypically distinct lineage-committed subpopulations, including one early uncommitted CD123+ pre-DC subset (early pre-DC), which give rise to both cDC1 and cDC2 through corresponding CD45RA+CD123lo pre-cDC1 and pre-cDC2 lineage-committed subsets, respectively. Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune responses. The human DC population comprises two main functionally specialized lineages, whose origins and differentiation pathways remain incompletely defined. Here, we combine two high-dimensional technologies—single-cell messenger RNA sequencing (scmRNAseq) and cytometry by time-of-flight (CyTOF)—to identify human blood CD123+CD33+CD45RA+ DC precursors (pre-DC). Pre-DC share surface markers with plasmacytoid DC (pDC) but have distinct functional properties that were previously attributed to pDC. Tracing the differentiation of DC from the bone marrow to the peripheral blood revealed that the pre-DC compartment contains distinct lineage-committed subpopulations, including one early uncommitted CD123high pre-DC subset and two CD45RA+CD123low lineage-committed subsets exhibiting functional differences. The discovery of multiple committed pre-DC populations opens promising new avenues for the therapeutic exploitation of DC subset-specific targeting.


Cell Reports | 2015

Mapping the Diversity of Follicular Helper T Cells in Human Blood and Tonsils Using High-Dimensional Mass Cytometry Analysis

Michael T. Wong; Jinmiao Chen; Sriram Narayanan; Wenyu Lin; Rosslyn Anicete; Henry Tan Kun Kiaang; Maria A. Curotto de Lafaille; Michael Poidinger; Evan W. Newell

Single-cell analysis technologies such as mass cytometry allow for measurements of cellular heterogeneity with unprecedented dimensionality. Here, we applied dimensionality reduction and automated clustering methods on human T helper (T(H)) cells derived from peripheral blood and tonsils, which showed differential cell composition and extensive T(H) cell heterogeneity. Notably, this analysis revealed numerous subtypes of follicular helper T (T(FH)) cells that followed a continuum spanning both blood and tonsils. Furthermore, we identified tonsillar CXCR5(lo)PD-1(lo)CCR7(lo) T(FH) cells expressing interferon-γ (IFN-γ), interleukin-17 (IL-17), or Foxp3, indicating that T(FH) cells exhibit diverse functional capacities within extrafollicular stages. Regression analysis demonstrated that CXCR5(lo)PD-1(-) and CXCR5(lo)PD-1(lo) cells accumulate during childhood in secondary lymphoid organs, supporting previous findings that these subsets represent memory T(FH) cells. This study provides an in-depth comparison of human blood and tonsillar T(FH) cells and outlines a general approach for subset discovery and hypothesizing of cellular progressions.


Gut | 2017

Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma

Marta Garnelo; Alex Tan; Zhisheng Her; Joe Yeong; Chun Jye Lim; Jinmiao Chen; Kiat Hon Lim; Achim Weber; Pierce K. H. Chow; Alexander Y. F. Chung; Ooi Ll; Han Chong Toh; Mathias Heikenwalder; Irene Oi-Lin Ng; Alessandra Nardin; Qingfeng Chen; Jean-Pierre Abastado; Valerie Chew

Objective The nature of the tumour-infiltrating leucocytes (TILs) is known to impact clinical outcome in carcinomas, including hepatocellular carcinoma (HCC). However, the role of tumour-infiltrating B cells (TIBs) remains controversial. Here, we investigate the impact of TIBs and their interaction with T cells on HCC patient prognosis. Design Tissue samples were obtained from 112 patients with HCC from Singapore, Hong Kong and Zurich and analysed using immunohistochemistry and immunofluorescence. RNA expression of CD19, CD8A, IFNG was analysed using quantitative PCR. The phenotype of freshly isolated TILs was analysed using flow cytometry. A mouse model depleted of mature B cells was used for functional study. Results Tumour-infiltrating T cells and B cells were observed in close contact with each other and their densities are correlated with superior survival in patients with HCC. Furthermore, the density of TIBs was correlated with an enhanced expression of granzyme B and IFN-γ, as well as with reduced tumour viability defined by low expression of Ki-67, and an enhanced expression of activated caspase-3 on tumour cells. CD27 and CD40 costimulatory molecules and TILs expressing activation marker CD38 in the tumour were also correlated with patient survival. Mice depleted of mature B cells and transplanted with murine hepatoma cells showed reduced tumour control and decreased local T cell activation, further indicating the important role of B cells. Conclusions The close proximity of tumour-infiltrating T cells and B cells indicates a functional interaction between them that is linked to an enhanced local immune activation and contributes to better prognosis for patients with HCC.

Collaboration


Dive into the Jinmiao Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evan W. Newell

Singapore Immunology Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge