Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter See is active.

Publication


Featured researches published by Peter See.


Science | 2010

Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages

Florent Ginhoux; Melanie Greter; Marylene Leboeuf; Sayan Nandi; Peter See; Solen Gokhan; Mark F. Mehler; Simon J. Conway; Lai Guan Ng; E. Richard Stanley; Igor M. Samokhvalov; Miriam Merad

Primitive Origins for Microglia Microglia are the resident macrophages of the central nervous system and are associated with neurodegeneration and brain inflammatory diseases. Although the developmental origins of other tissue macrophage populations are well established, the origins of microglia remain controversial. Ginhoux et al. (p. 841, published online 21 October) used in vivo lineage tracing studies to show that microglia arise early in mouse development and derive from primitive macrophages in the yolk sac. This is in contrast to other cells of the mononuclear phagocyte system, which arise later in development from a distinct progenitor population. The developmental origins of adult microglia are revealed. Microglia are the resident macrophages of the central nervous system and are associated with the pathogenesis of many neurodegenerative and brain inflammatory diseases; however, the origin of adult microglia remains controversial. We show that postnatal hematopoietic progenitors do not significantly contribute to microglia homeostasis in the adult brain. In contrast to many macrophage populations, we show that microglia develop in mice that lack colony stimulating factor-1 (CSF-1) but are absent in CSF-1 receptor–deficient mice. In vivo lineage tracing studies established that adult microglia derive from primitive myeloid progenitors that arise before embryonic day 8. These results identify microglia as an ontogenically distinct population in the mononuclear phagocyte system and have implications for the use of embryonically derived microglial progenitors for the treatment of various brain disorders.


Immunity | 2013

IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses

Andreas Schlitzer; Naomi McGovern; Pearline Teo; Teresa Zelante; Koji Atarashi; Donovan Low; Adrian W. S. Ho; Peter See; Amanda Shin; Pavandip Singh Wasan; Guillaume Hoeffel; Benoit Malleret; Alexander F. Heiseke; Samantha Chew; Laura Jardine; Harriet A. Purvis; Catharien M. U. Hilkens; John Tam; Michael Poidinger; E. Richard Stanley; Anne Krug; Laurent Rénia; Baalasubramanian Sivasankar; Lai Guan Ng; Matthew Collin; Paola Ricciardi-Castagnoli; Kenya Honda; Muzlifah Haniffa; Florent Ginhoux

Summary Mouse and human dendritic cells (DCs) are composed of functionally specialized subsets, but precise interspecies correlation is currently incomplete. Here, we showed that murine lung and gut lamina propria CD11b+ DC populations were comprised of two subsets: FLT3- and IRF4-dependent CD24+CD64− DCs and contaminating CSF-1R-dependent CD24−CD64+ macrophages. Functionally, loss of CD24+CD11b+ DCs abrogated CD4+ T cell-mediated interleukin-17 (IL-17) production in steady state and after Aspergillus fumigatus challenge. Human CD1c+ DCs, the equivalent of murine CD24+CD11b+ DCs, also expressed IRF4, secreted IL-23, and promoted T helper 17 cell responses. Our data revealed heterogeneity in the mouse CD11b+ DC compartment and identifed mucosal tissues IRF4-expressing DCs specialized in instructing IL-17 responses in both mouse and human. The demonstration of mouse and human DC subsets specialized in driving IL-17 responses highlights the conservation of key immune functions across species and will facilitate the translation of mouse in vivo findings to advance DC-based clinical therapies.


Immunity | 2012

Human Tissues Contain CD141hi Cross-Presenting Dendritic Cells with Functional Homology to Mouse CD103+ Nonlymphoid Dendritic Cells

Muzlifah Haniffa; Amanda Shin; Venetia Bigley; Naomi McGovern; Pearline Teo; Peter See; Pavandip Singh Wasan; Xiao-Nong Wang; Frano Malinarich; Benoit Malleret; Anis Larbi; Pearlie W.W. Tan; Helen Zhao; Michael Poidinger; Sarah Pagan; Sharon Cookson; Rachel Dickinson; Ian Dimmick; Ruth F. Jarrett; Laurent Rénia; John Tam; Colin Song; John Connolly; Jerry Chan; Adam J. Gehring; Antonio Bertoletti; Matthew Collin; Florent Ginhoux

Summary Dendritic cell (DC)-mediated cross-presentation of exogenous antigens acquired in the periphery is critical for the initiation of CD8+ T cell responses. Several DC subsets are described in human tissues but migratory cross-presenting DCs have not been isolated, despite their potential importance in immunity to pathogens, vaccines, and tumors and tolerance to self. Here, we identified a CD141hi DC present in human interstitial dermis, liver, and lung that was distinct from the majority of CD1c+ and CD14+ tissue DCs and superior at cross-presenting soluble antigens. Cutaneous CD141hi DCs were closely related to blood CD141+ DCs, and migratory counterparts were found among skin-draining lymph node DCs. Comparative transcriptomic analysis with mouse showed tissue DC subsets to be conserved between species and permitted close alignment of human and mouse DC subsets. These studies inform the rational design of targeted immunotherapies and facilitate translation of mouse functional DC biology to the human setting.


Journal of Experimental Medicine | 2012

Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages.

Guillaume Hoeffel; Yilin Wang; Melanie Greter; Peter See; Pearline Teo; Benoit Malleret; Marylene Leboeuf; Donovan Low; Guillaume Oller; Francisca F. Almeida; Sharon H.Y. Choy; Marcos G. Grisotto; Laurent Rénia; Simon J. Conway; E. Richard Stanley; Jerry Chan; Lai Guan Ng; Igor M. Samokhvalov; Miriam Merad; Florent Ginhoux

Langerhans cell precursors initially arise from yolk sac progenitors, but are later superseded by fetal liver monocytes.


Immunity | 2015

C-Myb+ Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages

Guillaume Hoeffel; Jinmiao Chen; Yonit Lavin; Donovan Low; Francisca F. Almeida; Peter See; Anna E. Beaudin; Josephine Lum; Ivy Low; E. Camilla Forsberg; Michael Poidinger; Francesca Zolezzi; Anis Larbi; Lai Guan Ng; Jerry Chan; Melanie Greter; Burkhard Becher; Igor M. Samokhvalov; Miriam Merad; Florent Ginhoux

Although classified as hematopoietic cells, tissue-resident macrophages (MFs) arise from embryonic precursors that seed the tissues prior to birth to generate a self-renewing population, which is maintained independently of adult hematopoiesis. Here we reveal the identity of these embryonic precursors using an in utero MF-depletion strategy and fate-mapping of yolk sac (YS) and fetal liver (FL) hematopoiesis. We show that YS MFs are the main precursors of microglia, while most other MFs derive from fetal monocytes (MOs). Both YS MFs and fetal MOs arise from erythro-myeloid progenitors (EMPs) generated in the YS. In the YS, EMPs gave rise to MFs without monocytic intermediates, while EMP seeding the FL upon the establishment of blood circulation acquired c-Myb expression and gave rise to fetal MOs that then seeded embryonic tissues and differentiated into MFs. Thus, adult tissue-resident MFs established from hematopoietic stem cell-independent embryonic precursors arise from two distinct developmental programs.


PLOS ONE | 2011

CD8+ T cells and IFN-γ mediate the time-dependent accumulation of infected red blood cells in deep organs during experimental cerebral malaria.

Carla Claser; Benoit Malleret; Sin Yee Gun; Alicia Yoke Wei Wong; Zi Wei Chang; Pearline Teo; Peter See; Shanshan W. Howland; Florent Ginhoux; Laurent Rénia

Background Infection with Plasmodium berghei ANKA (PbA) in susceptible mice induces a syndrome called experimental cerebral malaria (ECM) with severe pathologies occurring in various mouse organs. Immune mediators such as T cells or cytokines have been implicated in the pathogenesis of ECM. Red blood cells infected with PbA parasites have been shown to accumulate in the brain and other tissues during infection. This accumulation is thought to be involved in PbA–induced pathologies, which mechanisms are poorly understood. Methods and Findings Using transgenic PbA parasites expressing the luciferase protein, we have assessed by real-time in vivo imaging the dynamic and temporal contribution of different immune factors in infected red blood cell (IRBC) accumulation and distribution in different organs during PbA infection. Using deficient mice or depleting antibodies, we observed that CD8+ T cells and IFN-γ drive the rapid increase in total parasite biomass and accumulation of IRBC in the brain and in different organs 6–12 days post-infection, at a time when mice develop ECM. Other cells types like CD4+ T cells, monocytes or neutrophils or cytokines such as IL-12 and TNF-α did not influence the early increase of total parasite biomass and IRBC accumulation in different organs. Conclusions CD8+ T cells and IFN-γ are the major immune mediators controlling the time-dependent accumulation of P. berghei-infected red blood cells in tissues.


Science | 2017

Mapping the human DC lineage through the integration of high-dimensional techniques

Peter See; Charles-Antoine Dutertre; Jinmiao Chen; Patrick Günther; Naomi McGovern; Sergio Erdal Irac; Merry Gunawan; Marc Beyer; Kristian Händler; Kaibo Duan; Hermi Rizal Bin Sumatoh; Nicolas Ruffin; Mabel Jouve; Ester Gea-Mallorquí; Raoul C. M. Hennekam; Tony Kiat Hon Lim; Chan Chung Yip; Ming Wen; Benoit Malleret; Ivy Low; Nurhidaya Binte Shadan; Charlene Foong Shu Fen; Alicia Tay; Josephine Lum; Francesca Zolezzi; Anis Larbi; Michael Poidinger; Jerry Chan; Qingfeng Chen; Laurent Rénia

Tracing development of the dendritic cell lineage Dendritic cells (DCs) are important components of the immune system that form from the bone marrow into two major cell lineages: plasmacytoid DCs and conventional DCs. See et al. applied single-cell RNA sequencing and cytometry by time-of-flight to characterize the developmental pathways of these cells. They identified blood DC precursors that shared surface markers with plasmacytoid DCs but that were functionally distinct. This unsuspected level of complexity in pre-DC populations reveals additional cell types and refines understanding of known cell types. Science, this issue p. eaag3009 In human blood, the immunological dendritic cell lineage contains many predendritic cell populations. INTRODUCTION Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune responses. The human DC population comprises multiple subsets, including plasmacytoid DC (pDC) and two functionally specialized lineages of conventional DC (cDC1 and cDC2), whose origins and differentiation pathways remain incompletely defined. RATIONALE As DC are essential regulators of the immune response in health and disease, potential intervention strategies aiming at manipulation of these cells will require in-depth insights of their origins, the mechanisms that govern their homeostasis, and their functional properties. Here, we employed two unbiased high-dimensional technologies to characterize the human DC lineage from bone marrow to blood. RESULTS We isolated the DC-containing population (Lineage−HLA−DR+CD135+ cells) from human blood and defined the transcriptomes of 710 individual cells using massively parallel single-cell mRNA sequencing. By combining complementary bioinformatic approaches, we identified a small cluster of cells within this population as putative DC precursors (pre-DC). We then confirmed this finding using cytometry by time-of-flight (CyTOF) to simultaneously measure the expression of a panel of 38 different proteins at the single-cell level on Lineage−HLA−DR+ cells and found that pre-DC possessed a CD123+CD33+CD45RA+ phenotype. We confirmed the precursor potential of pre-DC by establishing their potential to differentiate in vitro into cDC1 and cDC2, but not pDC, in the known proportions found in vivo. Interestingly, pre-DC also express classical pDC markers, including CD123, CD303, and CD304. Thus, any previous studies using these markers to identify or isolate pDC will have inadvertently included CD123+CD33+ pre-DC. We provide here new markers that can be used to identify unambiguously pre-DC from pDC, including CD33, CX3CR1, CD2, CD5, and CD327. When CD123+CD33+ pre-DC and CD123+CD33− pDC were isolated separately, we observed that pre-DC have unique functional properties that were previously attributed to pDC. Although pDC remain bona fide interferon-α–producing cells, their reported interleukin-12 (IL-12) production and CD4 T cell allostimulatory capacity can likely be attributed to “contaminating” pre-DC. We then asked whether the pre-DC population contained both uncommitted and committed pre-cDC1 and pre-cDC2 precursors, as recently shown in mice. Using microfluidic single-cell mRNA sequencing (scmRNAseq), we showed that the human pre-DC population contains cells exhibiting transcriptomic priming toward cDC1 and cDC2 lineages. Flow cytometry and in vitro DC differentiation experiments further identified CD123+CADM1−CD1c− putative uncommitted pre-DC, alongside CADM1+CD1c− pre-cDC1 and CADM1−CD1c+ pre-cDC2. Finally, we found that pre-DC subsets expressed T cell costimulatory molecules and induced comparable proliferation and polarization of naïve CD4 T cells as adult DC. However, exposure to the Toll-like receptor 9 (TLR9) ligand CpG triggered IL-12p40 and tumor necrosis factor–α production by early pre-DC, pre-cDC1, and pre-cDC2, in contrast to differentiated cDC1 and cDC2, which do not express TLR9. CONCLUSION Using unsupervised scmRNAseq and CyTOF analyses, we have unraveled the complexity of the human DC lineage at the single-cell level, revealing a continuous process of differentiation that starts in the bone marrow (BM) with common DC progenitors (CDP), diverges at the point of emergence of pre-DC and pDC potential, and culminates in maturation of both lineages in the blood and spleen. The pre-DC compartment contains functionally and phenotypically distinct lineage-committed subpopulations, including one early uncommitted CD123+ pre-DC subset and two CD45RA+CD123lo lineage-committed subsets. The discovery of multiple committed pre-DC populations with unique capabilities opens promising new avenues for the therapeutic exploitation of DC subset-specific targeting. Human DC emerge from BM CDP, diverge at the point of emergence of pre-DC and pDC potential, and culminate in maturation of both lineages in the blood. The pre-DC compartment further differentiates into functionally and phenotypically distinct lineage-committed subpopulations, including one early uncommitted CD123+ pre-DC subset (early pre-DC), which give rise to both cDC1 and cDC2 through corresponding CD45RA+CD123lo pre-cDC1 and pre-cDC2 lineage-committed subsets, respectively. Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune responses. The human DC population comprises two main functionally specialized lineages, whose origins and differentiation pathways remain incompletely defined. Here, we combine two high-dimensional technologies—single-cell messenger RNA sequencing (scmRNAseq) and cytometry by time-of-flight (CyTOF)—to identify human blood CD123+CD33+CD45RA+ DC precursors (pre-DC). Pre-DC share surface markers with plasmacytoid DC (pDC) but have distinct functional properties that were previously attributed to pDC. Tracing the differentiation of DC from the bone marrow to the peripheral blood revealed that the pre-DC compartment contains distinct lineage-committed subpopulations, including one early uncommitted CD123high pre-DC subset and two CD45RA+CD123low lineage-committed subsets exhibiting functional differences. The discovery of multiple committed pre-DC populations opens promising new avenues for the therapeutic exploitation of DC subset-specific targeting.


Nature Immunology | 2015

The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin

Merry Gunawan; Nandini Venkatesan; Jia Tong Loh; Jong Fu Wong; Heidi Berger; Wen Hao Neo; Liang Yao Jackson Li; Myint Khun La Win; Yin Hoe Yau; Tiannan Guo; Peter See; Sayuri Yamazaki; Keh Chuang Chin; Alexandre R. Gingras; Susana Geifman Shochat; Lai Guan Ng; Siu Kwan Sze; Florent Ginhoux; I-hsin Su

A cytosolic role for the histone methyltransferase Ezh2 in regulating lymphocyte activation has been suggested, but the molecular mechanisms underpinning this extranuclear function have remained unclear. Here we found that Ezh2 regulated the integrin signaling and adhesion dynamics of neutrophils and dendritic cells (DCs). Ezh2 deficiency impaired the integrin-dependent transendothelial migration of innate leukocytes and restricted disease progression in an animal model of multiple sclerosis. Direct methylation of talin, a key regulatory molecule in cell migration, by Ezh2 disrupted the binding of talin to F-actin and thereby promoted the turnover of adhesion structures. This regulatory effect was abolished by targeted disruption of the interactions of Ezh2 with the cytoskeletal-reorganization effector Vav1. Our studies reveal an unforeseen extranuclear function for Ezh2 in regulating adhesion dynamics, with implications for leukocyte migration, immune responses and potentially pathogenic processes.


Blood | 2012

Tissue-specific differentiation of a circulating CCR9 − pDC-like common dendritic cell precursor

Andreas Schlitzer; Alexander F. Heiseke; Henrik Einwächter; Wolfgang Reindl; Matthias Schiemann; Calin-Petru Manta; Peter See; Jan Hendrik Niess; Tobias Suter; Florent Ginhoux; Anne Krug

The ontogenic relationship between the common dendritic cell (DC) progenitor (CDP), the committed conventional DC precursor (pre-cDC), and cDC subpopulations in lymphoid and nonlymphoid tissues has been largely unraveled. In contrast, the sequential steps of plasmacytoid DC (pDC) development are less defined, and it is unknown at which developmental stage and location final commitment to the pDC lineage occurs. Here we show that CCR9(-) pDCs from murine BM which enter the circulation and peripheral tissues have a common DC precursor function in vivo in the steady state, in contrast to CCR9(+) pDCs which are terminally differentiated. On adoptive transfer, the fate of CCR9(-) pDC-like precursors is governed by the tissues they enter. In the BM and liver, most transferred CCR9(-) pDC-like precursors differentiate into CCR9(+) pDCs, whereas in peripheral lymphoid organs, lung, and intestine, they additionally give rise to cDCs. CCR9(-) pDC-like precursors which are distinct from pre-cDCs can be generated from the CDP. Thus, CCR9(-) pDC-like cells are novel CDP-derived circulating DC precursors with pDC and cDC potential. Their final differentiation into functionally distinct pDCs and cDCs depends on tissue-specific factors allowing adaptation to local requirements under homeostatic conditions.


European Journal of Immunology | 2011

The earliest intrathymic precursors of CD8α(+) thymic dendritic cells correspond to myeloid-type double-negative 1c cells.

Hervé Luche; Laurence Ardouin; Pearline Teo; Peter See; Sandrine Henri; Miriam Merad; Florent Ginhoux; Bernard Malissen

The dendritic cells (DCs) present in lymphoid and non‐lymphoid organs are generated from progenitors with myeloid‐restricted potential. However, in the thymus a major subset of DCs expressing CD8α and langerin (CD207) appears to stand apart from all other DCs in that it is thought to derive from progenitors with lymphoid potential. Using mice expressing a fluorescent reporter and a diphtheria toxin receptor under the control of the cd207 gene, we demonstrated that CD207+CD8α+ thymic DCs do not share a common origin with T cells but originate from intrathymic precursors that express markers that are normally present on all (CD11c+ and MHCII molecules) or on some (CD207, CD135, CD8α, CX3CR1) DC subsets. Those intrathymic myeloid‐type precursors correspond to CD44+CD25– double‐negative 1c (DN1c) cells and are continuously renewed from bone marrow‐derived canonical DC precursors. In conclusion, our results demonstrate that the earliest intrathymic precursors of CD8α+ thymic DCs correspond to myeloid‐type DN1c cells and support the view that under physiological conditions myeloid‐restricted progenitors generate the whole constellation of DCs present in the body including the thymus.

Collaboration


Dive into the Peter See's collaboration.

Top Co-Authors

Avatar

Florent Ginhoux

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoit Malleret

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge