Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiri Hulcr is active.

Publication


Featured researches published by Jiri Hulcr.


Nature | 2007

Low beta diversity of herbivorous insects in tropical forests.

Vojtech Novotny; Scott E. Miller; Jiri Hulcr; Richard Arthur Ian Drew; Yves Basset; Milan Janda; Gregory P. Setliff; Karolyn Darrow; Alan J. A. Stewart; John Auga; Brus Isua; Kenneth Molem; Markus Manumbor; Elvis Tamtiai; Martin Mogia; George D. Weiblen

Recent advances in understanding insect communities in tropical forests have contributed little to our knowledge of large-scale patterns of insect diversity, because incomplete taxonomic knowledge of many tropical species hinders the mapping of their distribution records. This impedes an understanding of global biodiversity patterns and explains why tropical insects are under-represented in conservation biology. Our study of approximately 500 species from three herbivorous guilds feeding on foliage (caterpillars, Lepidoptera), wood (ambrosia beetles, Coleoptera) and fruit (fruitflies, Diptera) found a low rate of change in species composition (beta diversity) across 75,000 square kilometres of contiguous lowland rainforest in Papua New Guinea, as most species were widely distributed. For caterpillars feeding on large plant genera, most species fed on multiple host species, so that even locally restricted plant species did not support endemic herbivores. Large plant genera represented a continuously distributed resource easily colonized by moths and butterflies over hundreds of kilometres. Low beta diversity was also documented in groups with differing host specificity (fruitflies and ambrosia beetles), suggesting that dispersal limitation does not have a substantial role in shaping the distribution of insect species in New Guinea lowland rainforests. Similar patterns of low beta diversity can be expected in other tropical lowland rainforests, as they are typically situated in the extensive low basins of major tropical rivers similar to the Sepik–Ramu region of New Guinea studied here.


Journal of Animal Ecology | 2010

Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest

Vojtech Novotny; Scott E. Miller; Leontine Baje; Solomon Balagawi; Yves Basset; Lukas Cizek; Kathleen J. Craft; Francesca Dem; Richard Arthur Ian Drew; Jiri Hulcr; Jan Lepš; Owen T. Lewis; Rapo Pokon; Alan J. A. Stewart; G. Allan Samuelson; George D. Weiblen

1. The extent to which plant-herbivore feeding interactions are specialized is key to understand the processes maintaining the diversity of both tropical forest plants and their insect herbivores. However, studies documenting the full complexity of tropical plant-herbivore food webs are lacking. 2. We describe a complex, species-rich plant-herbivore food web for lowland rain forest in Papua New Guinea, resolving 6818 feeding links between 224 plant species and 1490 herbivore species drawn from 11 distinct feeding guilds. By standardizing sampling intensity and the phylogenetic diversity of focal plants, we are able to make the first rigorous and unbiased comparisons of specificity patterns across feeding guilds. 3. Specificity was highly variable among guilds, spanning almost the full range of theoretically possible values from extreme trophic generalization to monophagy. 4. We identify guilds of herbivores that are most likely to influence the composition of tropical forest vegetation through density-dependent herbivory or apparent competition. 5. We calculate that 251 herbivore species (48 of them unique) are associated with each rain forest tree species in our study site so that the ∼200 tree species coexisting in the lowland rain forest community are involved in ∼50,000 trophic interactions with ∼9600 herbivore species of insects. This is the first estimate of total herbivore and interaction number in a rain forest plant-herbivore food web. 6. A comprehensive classification of insect herbivores into 24 guilds is proposed, providing a framework for comparative analyses across ecosystems and geographical regions.


Ecological Entomology | 2007

Host Specificity of Ambrosia and Bark Beetles (col., Curculionidae: Scolytinae and Platypodinae) in a New Guinea Rainforest

Jiri Hulcr; Martin Mogia; Brus Isua; Vojtech Novotny

Abstract 1. Bark and ambrosia beetles are crucial for woody biomass decomposition in tropical forests worldwide. Despite that, quantitative data on their host specificity are scarce.


Fungal Genetics and Biology | 2013

An inordinate fondness for Fusarium: Phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts

Matthew T. Kasson; Kerry O’Donnell; Alejandro P. Rooney; Stacy Sink; Randy C. Ploetz; Jill N. Ploetz; Joshua L. Konkol; Daniel Carrillo; Stanley Freeman; Zvi Mendel; Jason A. Smith; Adam Black; Jiri Hulcr; Craig Bateman; Kristyna Stefkova; Paul R. Campbell; Andrew D. W. Geering; E. K. Dann; Akif Eskalen; Keerthi Mohotti; Dylan P. G. Short; Takayuki Aoki; Kristi Fenstermacher; Donald D. Davis; David M. Geiser

Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naïve natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Clade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene ∼21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization.


Journal of Chemical Ecology | 2011

The Scent of a Partner: Ambrosia Beetles Are Attracted to Volatiles from Their Fungal Symbionts

Jiri Hulcr; Rajinder S. Mann; Lukasz L. Stelinski

Invasive fungus-growing ambrosia beetles are an emerging threat to forest ecosystems and fruit industries, but management tools are lacking. Here we explored the potential of beetle symbionts–ambrosia fungi–as a source of attractants. Our focus was the redbay ambrosia beetle, Xyleborus glabratus, and its symbiotic fungus, Raffaelea lauricola, which are devastating lauraceous hosts in the southeastern United States. We also tested three additional co-occurring beetle species and their symbionts. Each beetle species was consistently attracted to the odors of its symbiotic fungal species, occasionally also to symbionts of other species, but never to non-symbiotic Trichoderma. We further confirmed attraction to ethanol (positive control) in some species. Thus, ambrosia fungi produce volatiles attractive to their vector beetles, which may have potential as novel lures for ambrosia beetle management.


The ISME Journal | 2015

The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing

Martin Kostovčík; Craig Bateman; Miroslav Kolarik; Lukasz L. Stelinski; Bjarte H. Jordal; Jiri Hulcr

Symbioses are increasingly seen as dynamic ecosystems with multiple associates and varying fidelity. Symbiont specificity remains elusive in one of the most ecologically successful and economically damaging eukaryotic symbioses: the ambrosia symbiosis of wood-boring beetles and fungi. We used multiplexed pyrosequencing of amplified internal transcribed spacer II (ITS2) ribosomal DNA (rDNA) libraries to document the communities of fungal associates and symbionts inside the mycangia (fungus transfer organ) of three ambrosia beetle species, Xyleborus affinis, Xyleborus ferrugineus and Xylosandrus crassiusculus. We processed 93 beetle samples from 5 locations across Florida, including reference communities. Fungal communities within mycangia included 14–20 fungus species, many more than reported by culture-based studies. We recovered previously known nutritional symbionts as members of the core community. We also detected several other fungal taxa that are equally frequent but whose function is unknown and many other transient species. The composition of fungal assemblages was significantly correlated with beetle species but not with locality. The type of mycangium appears to determine specificity: two Xyleborus with mandibular mycangia had multiple dominant associates with even abundances; Xylosandrus crassiusculus (mesonotal mycangium) communities were dominated by a single symbiont, Ambrosiella sp. Beetle mycangia also carried many fungi from the environment, including plant pathogens and endophytes. The ITS2 marker proved useful for ecological analyses, but the taxonomic resolution was limited to fungal genus or family, particularly in Ophiostomatales, which are under-represented in our amplicons as well as in public databases. This initial analysis of three beetle species suggests that each clade of ambrosia beetles and each mycangium type may support a functionally and taxonomically distinct symbiosis.


Microbial Ecology | 2011

Presence and diversity of Streptomyces in Dendroctonus and sympatric bark beetle galleries across North America.

Jiri Hulcr; Aaron S. Adams; Kenneth F. Raffa; Richard W. Hofstetter; Kier D. Klepzig; Cameron R. Currie

Recent studies have revealed several examples of intimate associations between insects and Actinobacteria, including the Southern Pine Beetle Dendroctonus frontalis and the Spruce Beetle Dendroctonus rufipennis. Here, we surveyed Streptomyces Actinobacteria co-occurring with 10 species of Dendroctonus bark beetles across the United States, using both phylogenetic and community ecology approaches. From these 10 species, and 19 other scolytine beetles that occur in the same trees, we obtained 154 Streptomyces-like isolates and generated 16S sequences from 134 of those. Confirmed 16S sequences of Streptomyces were binned into 36 distinct strains using a threshold of 0.2% sequence divergence. The 16S rDNA phylogeny of all isolates does not correlate with the distribution of strains among beetle species, localities, or parts of the beetles or their galleries. However, we identified three Streptomyces strains occurring repeatedly on Dendroctonus beetles and in their galleries. Identity of these isolates was corroborated using a house-keeping gene sequence (efTu). These strains are not confined to a certain species of beetle, locality, or part of the beetle or their galleries. However, their role as residents in the woodboring insect niche is supported by the repeated association of their 16S and efTu from across the continent, and also having been reported in studies of other subcortical insects.


Fungal Genetics and Biology | 2015

Discordant phylogenies suggest repeated host shifts in the Fusarium-Euwallacea ambrosia beetle mutualism.

Kerry O’Donnell; Stacy Sink; Ran Libeskind-Hadas; Jiri Hulcr; Matthew T. Kasson; Randy C. Ploetz; Joshua L. Konkol; Jill N. Ploetz; Daniel Carrillo; Alina Campbell; Rita E. Duncan; Pradeepa N.H. Liyanage; Akif Eskalen; Francis Na; David M. Geiser; Craig Bateman; Stanley Freeman; Zvi Mendel; Michal Sharon; Takayuki Aoki; Allard A. Cossé; Alejandro P. Rooney

The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symbionts in paired mandibular mycangia from their natal gallery to woody hosts where they are cultivated in galleries as a source of food. Native to Asia, several exotic Euwallacea species were introduced into the United States and Israel within the past two decades and they now threaten urban landscapes, forests and avocado production. To assess species limits and to date the evolutionary diversification of the mutualists, we reconstructed the evolutionary histories of key representatives of the Fusarium and Euwallacea clades using maximum parsimony and maximum likelihood methods. Twelve species-level lineages, termed AF 1-12, were identified within the monophyletic AFC and seven among the Fusarium-farming Euwallacea. Bayesian diversification-time estimates placed the origin of the Euwallacea-Fusarium mutualism near the Oligocene-Miocene boundary ∼19-24 Mya. Most Euwallacea spp. appear to be associated with one species of Fusarium, but two species farmed two closely related fusaria. Euwallacea sp. #2 in Miami-Dade County, Florida cultivated Fusarium spp. AF-6 and AF-8 on avocado, and Euwallacea sp. #4 farmed Fusarium ambrosium AF-1 and Fusarium sp. AF-11 on Chinese tea in Sri Lanka. Cophylogenetic analyses indicated that the Euwallacea and Fusarium phylogenies were largely incongruent, apparently due to the beetles switching fusarial symbionts (i.e., host shifts) at least five times during the evolution of this mutualism. Three cospeciation events between Euwallacea and their AFC symbionts were detected, but randomization tests failed to reject the null hypothesis that the putative parallel cladogenesis is a stochastic pattern. Lastly, two collections of Euwallacea sp. #2 from Miami-Dade County, Florida shared an identical cytochrome oxidase subunit 1 (CO1) allele with Euwallacea validus, suggesting introgressive hybridization between these species and/or pseudogenous nature of this marker. Results of the present study highlight the importance of understanding the potential for and frequency of host-switching between Euwallacea and members of the AFC, and that these shifts may bring together more aggressive and virulent combinations of these invasive mutualists.


Systematic Entomology | 2007

Cladistic review of generic taxonomic characters in Xyleborina (Coleoptera: Curculionidae: Scolytinae)

Jiri Hulcr; Stephanie A. Dole; Roger A. Beaver; Anthony I. Cognato

Abstract A cladistic analysis of morphological characters of the subtribe Xyleborina (Curculionidae, Scolytinae) is presented. An examination of individual characters revealed little phylogenetic information in many characters currently used for delimiting genera. Phylogenetically stable characters were used for the evaluation of the contemporary generic concept. The following genera have been recovered as monophyletic: Cnestus, Dryocoetoides, Eccoptopterus, Xylosandrus, Schedlia, Sampsonius and Taurodemus. The following genera have been found to be polyphyletic: Amasa, Ambrosiodmus, Arixyleborus, Coptoborus, Coptodryas, Cryptoxyleborus, Cyclorhipidion, Euwallacea, Leptoxyleborus, Taphrodasus, Theoborus, Webbia, Xyleborinus and Xyleborus. The analysis permitted the resurrection of four genera: Anisandrus, Microperus, Pseudowebbia and Streptocranus. A number of new combinations at specific level are given: Anisandrus cornutus (Schaufuss, 1891), A. dispar (Fabricius, 1792), A. eggersi (Beeson, 1930), A. improbus (Sampson, 1913), A. longidens (Eggers, 1930), A. maiche Stark, 1936, A. obesus (LeConte, 1868), A. sayi Hopkins, 1915, A. apicalis (Blandford, 1894), A. hirtus (Hagedorn, 1904), Microperus myristicae (Schedl, 1939), M. eucalypticus (Schedl, 1938), M. huangi (Browne, 1983), M. intermedius (Eggers, 1923), M. kadoyamaensis (Murayama, 1934), Pseudowebbia armifer (Schedl, 1942), P. seriata Browne, 1963, P. squamatilis (Schedl, 1955), P. trepanicauda (Eggers, 1923), P. curvatus (Browne, 1986), Streptocranus bicolor Browne, 1949, S. bicuspis (Eggers, 1940), S. capucinulus (Schedl, 1942), S. forficatus (Schedl, 1957), S. fragilis Browne, 1949, S. longicauda Browne, 1960, S. longispinis Browne, 1986, S. mirabilis Schedl, 1939, S. usagaricus (Eggers, 1922), S. sexdentatus (Eggers, 1940). The characters most useful for generic‐level taxonomy of Xyleborina were identified and their states refined and illustrated. An accompanying illustrated multiple‐entry electronic key for the updated xyleborine classification has been published on‐line at www.scolytid.msu.edu.


Evolution | 2010

REPEATED EVOLUTION OF CROP THEFT IN FUNGUS-FARMING AMBROSIA BEETLES

Jiri Hulcr; Anthony I. Cognato

Ambrosia beetles, dominant wood degraders in the tropics, create tunnels in dead trees and employ gardens of symbiotic fungi to extract nutrients from wood. Specificity of the beetle–fungus relationship has rarely been examined, and simple vertical transmission of a specific fungal cultivar by each beetle species is often assumed in literature. We report repeated evolution of fungal crop stealing, termed mycocleptism, among ambrosia beetles. The mycocleptic species seek brood galleries of other species, and exploit their established fungal gardens by tunneling through the ambient mycelium‐laden wood. Instead of carrying their own fungal sybmbionts, mycocleptae depend on adopting the fungal assemblages of their host species, as shown by an analysis of fungal DNA from beetle galleries. The evidence for widespread horizontal exchange of fungi between beetles challenges the traditional concept of ambrosia fungi as species‐specific symbionts. Fungus stealing appears to be an evolutionarily successful strategy. It evolved independently in several beetle clades, two of which have radiated, and at least one case was accompanied by a loss of the beetles’ fungus‐transporting organs. We demonstrate this using the first robust phylogeny of one of the worlds largest group of ambrosia beetles, Xyleborini.

Collaboration


Dive into the Jiri Hulcr's collaboration.

Top Co-Authors

Avatar

Robert J. Rabaglia

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

You Li

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akif Eskalen

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge