Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew T. Kasson is active.

Publication


Featured researches published by Matthew T. Kasson.


Fungal Genetics and Biology | 2013

An inordinate fondness for Fusarium: Phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts

Matthew T. Kasson; Kerry O’Donnell; Alejandro P. Rooney; Stacy Sink; Randy C. Ploetz; Jill N. Ploetz; Joshua L. Konkol; Daniel Carrillo; Stanley Freeman; Zvi Mendel; Jason A. Smith; Adam Black; Jiri Hulcr; Craig Bateman; Kristyna Stefkova; Paul R. Campbell; Andrew D. W. Geering; E. K. Dann; Akif Eskalen; Keerthi Mohotti; Dylan P. G. Short; Takayuki Aoki; Kristi Fenstermacher; Donald D. Davis; David M. Geiser

Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naïve natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Clade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene ∼21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization.


Fungal Genetics and Biology | 2015

Discordant phylogenies suggest repeated host shifts in the Fusarium-Euwallacea ambrosia beetle mutualism.

Kerry O’Donnell; Stacy Sink; Ran Libeskind-Hadas; Jiri Hulcr; Matthew T. Kasson; Randy C. Ploetz; Joshua L. Konkol; Jill N. Ploetz; Daniel Carrillo; Alina Campbell; Rita E. Duncan; Pradeepa N.H. Liyanage; Akif Eskalen; Francis Na; David M. Geiser; Craig Bateman; Stanley Freeman; Zvi Mendel; Michal Sharon; Takayuki Aoki; Allard A. Cossé; Alejandro P. Rooney

The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symbionts in paired mandibular mycangia from their natal gallery to woody hosts where they are cultivated in galleries as a source of food. Native to Asia, several exotic Euwallacea species were introduced into the United States and Israel within the past two decades and they now threaten urban landscapes, forests and avocado production. To assess species limits and to date the evolutionary diversification of the mutualists, we reconstructed the evolutionary histories of key representatives of the Fusarium and Euwallacea clades using maximum parsimony and maximum likelihood methods. Twelve species-level lineages, termed AF 1-12, were identified within the monophyletic AFC and seven among the Fusarium-farming Euwallacea. Bayesian diversification-time estimates placed the origin of the Euwallacea-Fusarium mutualism near the Oligocene-Miocene boundary ∼19-24 Mya. Most Euwallacea spp. appear to be associated with one species of Fusarium, but two species farmed two closely related fusaria. Euwallacea sp. #2 in Miami-Dade County, Florida cultivated Fusarium spp. AF-6 and AF-8 on avocado, and Euwallacea sp. #4 farmed Fusarium ambrosium AF-1 and Fusarium sp. AF-11 on Chinese tea in Sri Lanka. Cophylogenetic analyses indicated that the Euwallacea and Fusarium phylogenies were largely incongruent, apparently due to the beetles switching fusarial symbionts (i.e., host shifts) at least five times during the evolution of this mutualism. Three cospeciation events between Euwallacea and their AFC symbionts were detected, but randomization tests failed to reject the null hypothesis that the putative parallel cladogenesis is a stochastic pattern. Lastly, two collections of Euwallacea sp. #2 from Miami-Dade County, Florida shared an identical cytochrome oxidase subunit 1 (CO1) allele with Euwallacea validus, suggesting introgressive hybridization between these species and/or pseudogenous nature of this marker. Results of the present study highlight the importance of understanding the potential for and frequency of host-switching between Euwallacea and members of the AFC, and that these shifts may bring together more aggressive and virulent combinations of these invasive mutualists.


Mycologia | 2016

Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California

Shannon Colleen Lynch; M. Twizeyimana; J. S. Mayorquin; D. H. Wang; Francis Na; Mukaddes Kayim; Matthew T. Kasson; Pham Quang Thu; Craig Bateman; Paul F. Rugman-Jones; Jiri Hulcr; Richard Stouthamer; Akif Eskalen

Fusarium euwallaceae is a well-characterized fungal symbiont of the exotic ambrosia beetle Euwallacea sp. (polyphagous shot hole borer [PSHB]), together inciting Fusarium dieback on many host plants in Israel and California. Recent discoveries of additional fungal symbionts within ambrosia beetle mycangia suggest these fungi occur as communities. Colony-forming units of Graphium euwallaceae sp. nov. and Paracremonium pembeum sp. nov., two novel fungal associates of PSHB from California, grew from 36 macerated female heads and 36 gallery walls collected from Platanus racemosa, Acer negundo, Persea americana and Ricinus communis. Fungi were identified based on micromorphology and phylogenetic analyses of the combined internal transcribed spacer region (nuc rDNA ITS1-5.8S-ITS2 [ITS barcode]), elongation factor (EF 1-α), small subunit (18S rDNA) sequences for Graphium spp., ITS, EF 1-α, calmodulin (cmdA), large subunit of the ATP citrate lyase (acl1), β-tubulin (tub2), RNA polymerase II second largest subunit (rpb2) and large subunit (28S rDNA) sequences for Paracremonium spp. Other Graphium spp. recovered from PSHB in Vietnam, Euwallacea fornicatus in Thailand, E. validus in Pennsylvania and Paracremonium sp. recovered from PSHB in Vietnam were identified. F. euwallaceae was recovered from mycangia at higher frequencies and abundances in all hosts except R. communis, in which those of F. euwallaceae and P. pembeum were equal. P. pembeum was relatively more abundant within gallery walls of A. negundo and R. communis. In all hosts combined F. euwallaceae was relatively more abundant within PSHB heads than gallery walls. All three fungi grew at different rates and colonized inoculated excised stems of P. americana and A. negundo. P. pembeum produced longer lesions than F. euwallaceae and G. euwallaceae on inoculated avocado shoots. Results indicate PSHB is associated with a dynamic assemblage of mycangial fungal associates that pose additional risk to native and nonnative hosts in California.


Plant Disease | 2015

Expanded Host Range Testing for Verticillium nonalfalfae: Potential Biocontrol Agent Against the Invasive Ailanthus altissima

Matthew T. Kasson; E. S. O’Neal; Donald D. Davis

The naturally occurring Verticillium nonalfalfae has been proposed as a biocontrol agent against the highly invasive Ailanthus altissima in the eastern United States. We tested 71 nontarget woody species for susceptibility to the potential biocontrol agent. In the field, only devils walkingstick (17% incidence) and striped maple (3%) acquired infections through natural spread from infected A. altissima (100%). Staghorn sumac (16% incidence) also exhibited wilt in close proximity to diseased Ailanthus, although V. nonalfalfae was never recovered. Stem inoculations, which are highly artificial in that they bypass root defenses and flood the xylem with millions of conidia, induced varying levels of wilt and mortality in 10 nontarget species from which V. nonalfalfae was reisolated, although recovery and crown rebuilding occurred following initial wilt in several species including sassafras and northern catalpa. Thirty-seven of the 71 inoculated species exhibited vascular discoloration, although 23 of these species exhibited no outward symptoms (wilt, dieback) for up to 6 years postinoculation. However, V. nonalfalfae was reisolated from three of the 23 species, indicating a tolerant host response. Our results suggest that V. nonalfalfae is generally host-adapted to A. altissima with 78 of 78 A. altissima seed sources from 26 states and Canada showing susceptibility, and offers support for adoption and dissemination of V. nonalfalfae to combat the highly invasive A. altissima.


Phytopathology | 2014

Comparative Pathogenicity, Biocontrol Efficacy, and Multilocus Sequence Typing of Verticillium nonalfalfae from the Invasive Ailanthus altissima and Other Hosts

Matthew T. Kasson; Dylan P. G. Short; E. S. O'Neal; Krishna V. Subbarao; Donald D. Davis

Verticillium wilt, caused by Verticillium nonalfalfae, is currently killing tens of thousands of highly invasive Ailanthus altissima trees within the forests in Pennsylvania, Ohio, and Virginia and is being considered as a biological control agent of Ailanthus. However, little is known about the pathogenicity and virulence of V. nonalfalfae isolates from other hosts on Ailanthus, or the genetic diversity among V. nonalfalfae from confirmed Ailanthus wilt epicenters and from locations and hosts not associated with Ailanthus wilt. Here, we compared the pathogenicity and virulence of several V. nonalfalfae and V. alfalfae isolates, evaluated the efficacy of the virulent V. nonalfalfae isolate VnAa140 as a biocontrol agent of Ailanthus in Pennsylvania, and performed multilocus sequence typing of V. nonalfalfae and V. alfalfae. Inoculations of seven V. nonalfalfae and V. alfalfae isolates from six plant hosts on healthy Ailanthus seedlings revealed that V. nonalfalfae isolates from hosts other than Ailanthus were not pathogenic on Ailanthus. In the field, 100 canopy Ailanthus trees were inoculated across 12 stands with VnAa140 from 2006 to 2009. By 2011, natural spread of the fungus had resulted in the mortality of >14,000 additional canopy Ailanthus trees, 10,000 to 15,000 Ailanthus sprouts, and nearly complete eradication of Ailanthus from several smaller inoculated stands, with the exception of a few scattered vegetative sprouts that persisted in the understory for several years before succumbing. All V. nonalfalfae isolates associated with the lethal wilt of Ailanthus, along with 18 additional isolates from 10 hosts, shared the same multilocus sequence type (MLST), MLST 1, whereas three V. nonalfalfae isolates from kiwifruit shared a second sequence type, MLST 2. All V. alfalfae isolates included in the study shared the same MLST and included the first example of V. alfalfae infecting a non-lucerne host. Our results indicate that V. nonalfalfae is host adapted and highly efficacious against Ailanthus and, thus, is a strong candidate for use as a biocontrol agent.


PLOS ONE | 2015

New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles

You Li; David Rabern Simmons; Craig Bateman; Dylan P. G. Short; Matthew T. Kasson; Robert J. Rabaglia; Jiri Hulcr

Ambrosia symbiosis is an obligate, farming-like mutualism between wood-boring beetles and fungi. It evolved at least 11 times and includes many notorious invasive pests. All ambrosia beetles studied to date cultivate ascomycotan fungi: early colonizers of recently killed trees with poor wood digestion. Beetles in the widespread genus Ambrosiodmus, however, colonize decayed wood. We characterized the mycosymbionts of three Ambrosiodmus species using quantitative culturing, high-throughput metabarcoding, and histology. We determined the fungi to be within the Polyporales, closely related to Flavodon flavus. Culture-independent sequencing of Ambrosiodmus minor mycangia revealed a single operational taxonomic unit identical to the sequences from the cultured Flavodon. Histological sectioning confirmed that Ambrosiodmus possessed preoral mycangia containing dimitic hyphae similar to cultured F. cf. flavus. The Ambrosiodmus-Flavodon symbiosis is unique in several aspects: it is the first reported association between an ambrosia beetle and a basidiomycotan fungus; the mycosymbiont grows as hyphae in the mycangia, not as budding pseudo-mycelium; and the mycosymbiont is a white-rot saprophyte rather than an early colonizer: a previously undocumented wood borer niche. Few fungi are capable of turning rotten wood into complete animal nutrition. Several thousand beetle-fungus symbioses remain unstudied and promise unknown and unexpected mycological diversity and enzymatic innovations.


Mycologia | 2009

Spatial distribution of Neonectria species associated with beech bark disease in northern Maine.

Matthew T. Kasson; William H. Livingston

Beech bark disease (BBD) requires prior infestation of bark by an exotic scale insect, Cryptococcus fagisuga, to permit infection by one or more fungi, primarily Neonectria ditissima and Neonectria faginata. Previous studies in North America report a progression in which N. faginata replaces N. ditissima as the dominant pathogen in the BBD complex. To examine the status of the Neonectria populations in forests that have developed for decades with and without BBD a survey was conducted 2005–2006 in northern Maine. Ascospore measurements from 201 beech bark disks containing mature perithecia support reports that, once established, N. faginata dominates the BBD complex. However stands did contain more N. ditissima when other highly susceptible hardwood tree species were present (R2 = 0.775), regardless of disease severity. Abundance of N. ditissima in areas long affected by BBD suggests that N. ditissima, by continually supplying inocula from nonbeech hosts, continues to affect BBD.


Applied and Environmental Microbiology | 2015

Multilocus PCR Assays Elucidate Vegetative Incompatibility Gene Profiles of Cryphonectria parasitica in the United States

Dylan P. G. Short; M. L. Double; Donald L. Nuss; Cameron M. Stauder; W. L. MacDonald; Matthew T. Kasson

ABSTRACT Chestnut blight is a devastating disease of Castanea spp. Mycoviruses that reduce virulence (hypovirulence) of the causative agent, Cryphonectria parasitica, can be used to manage chestnut blight. However, vegetative incompatibility (vic) barriers that restrict anastomosis-mediated virus transmission hamper hypovirulence efficacy. In order to effectively determine the vegetative incompatibility genetic structure of C. parasitica field populations, we have designed PCR primer sets that selectively amplify and distinguish alleles for each of the six known diallelic C. parasitica vic genetic loci. PCR assay results were validated using a panel of 64 European tester strains with genetically determined vic genotypes. Analysis of 116 C. parasitica isolates collected from five locations in the eastern United States revealed 39 unique vic genotypes and generally good agreement between PCR and tester strain coculturing assays in terms of vic diversity and genotyping. However, incongruences were observed for isolates from multiple locations and suggested that the coculturing assay can overestimate diversity at the six known vic loci. The availability of molecular tools for rapid and precise vic genotyping significantly improves the ability to predict and evaluate the efficacy of hypovirulence and related management strategies.


Plant Disease | 2013

First report of verticillium wilt caused by Verticillium nonalfalfae on tree-of-heaven (Ailanthus altissima) in Ohio.

J. Rebbeck; M. A. Malone; Dylan P. G. Short; Matthew T. Kasson; E. S. O'Neal; Donald D. Davis

Verticillium wilt of the highly invasive tree-of-heaven [Ailanthus altissima (Mill.) Swingle], caused by Verticillium nonalfalfae Interbitzin et al. (1), formerly classified as V. albo-atrum Reinke and Berthold, has been reported in the United States from two states: Pennsylvania (2) and Virginia (3). Infected A. altissima in both states exhibited similar symptoms of wilt, premature defoliation, terminal dieback, yellow vascular discoloration, and mortality. In June 2012, the second author observed dead and dying A. altissima trees in southern Ohio (Pike County) that exhibited symptoms similar to those on diseased A. altissima trees in Pennsylvania and Virginia. Samples were collected from stems of three symptomatic A. altissima trees and sent to Penn State for morphological and molecular identification. Immediately upon arrival, samples were surface-disinfected and plated onto plum extract agar (PEA), a semi-selective medium for Verticillium spp., amended with neomycin and streptomycin (2). The samples yielded six isolates, two from each of the three symptomatic trees, all of which were putatively identified as V. nonalfalfae based on the presence of verticillate conidiophores and formation of melanized hyphae. DNA was extracted from three isolates and molecular analyses performed using known primers (1) coding for elongation factor 1-alpha (EF), glyceraldehyde-3-phosphate dehydrogenase (GPD), and tryptophan synthase (TS). A BLAST search generated sequences that revealed 100% similarity to V. nonalfalfae for all three protein coding genes among the three Ohio isolates and reference sequences from Ailanthus, including isolates VnAaPA140 (GenBank Accession Nos. KC307764, KC307766, and KC307768) and VnAaVA2 (KC307758, KC307759, and KC307760), as well as isolate PD592 from potato (JN188227, JN188163, and JN188035), thereby confirming taxonomic placement of the Ohio Ailanthus isolates among those recovered from Ailanthus in Pennsylvania and Virginia. Aligned sequences from one representative isolate, VnAaOH1, were deposited into GenBank as accessions KC307761 (EF), KC307762 (GPD), and KC307763 (TS). In August 2012, the pathogenicity of all six isolates was confirmed by root-dipping 10 healthy 3-week-old A. altissima seedlings (seeds collected in University Park, PA) into conidial suspensions of 1 × 107 cfu/ml, wherein all inoculated seedlings wilted and died within 4 and 9 weeks, respectively. V. nonalfalfae was reisolated from all inoculated seedlings; control seedlings inoculated with distilled water remained asymptomatic. Ohio is the third state from which V. nonalfalfae has been reported to be pathogenic on A. altissima. If V. nonalfalfae proves to be widespread, it may represent a natural biocontrol for the invasive A. altissima. Also, since USDA APHIS evaluates and regulates new potential biocontrol agents on a state-by-state basis, it is important to document each state in which V. nonalfalfae is killing A. altissima, so that in-state inoculum can be used for biocontrol efforts, simplifying the regulatory process. References: (1) P. Inderbitzin et al. 2011 PLoS ONE, 6, e28341, 2011. (2) M. J. Schall and D. D. Davis. Plant Dis. 93:747, 2009. (3) A. L. Snyder et al. Plant Dis. 96:837, 2013.


Mycologia | 2016

Two novel Fusarium species that cause canker disease of prickly ash (Zanthoxylum bungeanum) in northern China form a novel clade with Fusarium torreyae

Xue Zhou; Kerry O’Donnell; Takayuki Aoki; Jason A. Smith; Matthew T. Kasson; Zhi-Min Cao

Canker disease of prickly ash (Zanthoxylum bungeanum) has caused a decline in the production of this economically important spice in northern China in the past 25 y. To identify the etiological agent, 38 fungal isolates were recovered from symptomatic tissues from trees in five provinces in China. These isolates were identified by conducting BLASTN queries of NCBI GenBank and phylogenetic analyses of DNA sequence data from the nuclear ribosomal internal transcribed spacer region (ITS rDNA), a portion of the translation elongation factor 1-α (TEF1) gene, and genes encoding RNA polymerase II largest (RPB1) and second largest (RPB2) subunits. Results of these analyses suggested that 30/38 isolates belonged to two novel fusaria most closely related to the Florida torreya (Torreya taxifolia Arn.) pathogen, Fusarium torreyae in Florida and Georgia. These three canker-inducing tree pathogens form a novel clade within Fusarium here designated the F. torreyae species complex (FTOSC). BLASTN queries of GenBank also revealed that 5/38 isolates recovered from cankers represented an undescribed phylogenetic species within the F. solani species complex (FSSC) designated FSSC 6. Stem inoculations of three fusaria on Z. bungeanum resulted in consistent canker symptoms from which these three fusaria were recovered. The two novel fusaria, however, induced significantly larger lesions than FSSC 6. Herein, the two novel prickly ash pathogens are formally described as F. zanthoxyli and F. continuum.

Collaboration


Dive into the Matthew T. Kasson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald D. Davis

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akif Eskalen

University of California

View shared research outputs
Top Co-Authors

Avatar

David M. Geiser

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Kerry O’Donnell

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar

Alejandro P. Rooney

National Center for Agricultural Utilization Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge