Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiyeon Kang is active.

Publication


Featured researches published by Jiyeon Kang.


Molecules and Cells | 2012

Gintonin, Newly Identified Compounds from Ginseng, Is Novel Lysophosphatidic Acids-Protein Complexes and Activates G Protein-Coupled Lysophosphatidic Acid Receptors with High Affinity

Sung Hee Hwang; Tae-Joon Shin; Sun-Hye Choi; Hee-Jung Cho; Byung-Hwan Lee; Mi Kyung Pyo; Jun-Ho Lee; Jiyeon Kang; Hyeon-Joong Kim; Chan-Woo Park; Ho-Chul Shin; Seung-Yeol Nah

Recently, we isolated a subset of glycolipoproteins from Panax ginseng, that we designated gintonin, and demonstrated that it induced [Ca2+]i transients in cells via G-protein-coupled receptor (GPCR) signaling pathway(s). However, active components responsible for Ca2+ mobilization and the corresponding receptor(s) were unknown. Active component(s) for [Ca2+]i transients of gintonin were analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry and ion-mobility mass spectrometry, respectively. The corresponding receptor(s) were investigated through gene expression assays. We found that gintonin contains LPA C18:2 and other LPAs. Proteomic analysis showed that ginseng major latex-like protein and ribonuclease-like storage proteins are protein components of gintonin. Gintonin induced [Ca2+]i transients in B103 rat neuroblastoma cells transfected with human LPA receptors with high affinity in order of LPA2 > LPA5 > LPA1 > LPA3 > LPA4. The LPA1/LPA3 receptor antagonist Ki16425 blocked gintonin action in cells expressing LPA1 or LPA3. Mutations of binding sites in the LPA3 receptor attenuated gintonin action. Gintonin acted via pertussis toxin (PTX)-sensitive and -insensitive G protein-phospholipase C (PLC)-inositol 1,4,5-trisphosphate (IP3)-Ca2+ pathways. However, gintonin had no effects on other receptors examined. In human umbilical vein endothelial cells (HUVECs) gintonin stimulated cell proliferation and migration. Gintonin stimulated ERK1/2 phosphorylation. PTX blocked gintonin-mediated migration and ERK1/2 phosphorylation. In PC12 cells gintonin induced morphological changes, which were blocked by Rho kinase inhibitor Y-27632. Gintonin contains GPCR ligand LPAs in complexes with ginseng proteins and could be useful in the development of drugs targeting LPA receptors.


Journal of Alzheimer's Disease | 2012

Gintonin, a Ginseng-Derived Lysophosphatidic Acid Receptor Ligand, Attenuates Alzheimer's Disease-Related Neuropathies: Involvement of Non-Amyloidogenic Processing

Sung Hee Hwang; Eun-Joo Shin; Tae-Joon Shin; Byung-Hwan Lee; Sun-Hye Choi; Jiyeon Kang; Hyeon-Joong Kim; Seung-Hwan Kwon; Choon-Gon Jang; Jun-Ho Lee; Hyoung-Chun Kim; Seung-Yeol Nah

Ginseng extracts show cognition-enhancing effects in Alzheimers disease (AD) patients. However, little is known about the active components and molecular mechanisms of how ginseng exerts its effects. Recently, we isolated a novel lysophosphatidic acid (LPA) receptor-activating ligand from ginseng, gintonin. AD is caused by amyloid-β protein (Aβ) accumulation. Aβ is derived from amyloid-β protein precursors (AβPPs) through the amyloidogenic pathway. In contrast, non-amyloidogenic pathways produce beneficial, soluble AβPPα (sAβPPα). Here, we describe our investigations of the effect of gintonin on sAβPPα release, Aβ formation, Swedish-AβPP transfection-mediated neurotoxicity in SH-SY5Y neuroblastoma cells, and Aβ-induced neuropathy in mice. Gintonin promoted sAβPPα release in a concentration- and time-dependent manner. Gintonin action was also blocked by the Ca2+ chelator BAPTA, α-secretase inhibitor TAPI-2, and protein-trafficking inhibitor brefeldin. Gintonin decreased Aβ1-42 release and attenuated Aβ1-40-induced cytotoxicity in SH-SY5Y cells. Gintonin also rescued Aβ1-40-induced cognitive dysfunction in mice. Moreover, in a transgenic mouse AD model, long-term oral administration of gintonin attenuated amyloid plaque deposition as well as short- and long-term memory impairment. In the present study, we demonstrated that gintonin mediated the promotion of non-amyloidogenic processing to stimulate sAβPPα release to restore brain function in mice with AD. Gintonin could be a useful agent for AD prevention or therapy.


Journal of Ginseng Research | 2011

A simple method for the preparation of crude gintonin from ginseng root, stem, and leaf.

Mi Kyung Pyo; Sun-Hye Choi; Tae-Joon Shin; Sung Hee Hwang; Byung-Hwan Lee; Jiyeon Kang; Hyeon-Joong Kim; Soo-Han Lee; Seung-Yeol Nah

Ginseng has been used as a general tonic agent to invigorate the human body as an adaptogenic agent. In a previous report, we have shown that ginseng contains a novel glycolipoprotein called gintonin. The main function of gintonin is to transiently enhance intracellular free Ca2+ [Ca2+]i levels in animal cells. The previous method for gintonin isolation included multiple steps using organic solvents. In the present report, we developed a simple method for the preparation of crude gintonin from ginseng root as well as stem and leaf, which produced a higher yield of gintonin than the previous one. The yield of gintonin was 0.20%, 0.29%, and 0.81% from ginseng root, stem, and leaf, respectively. The apparent molecular weight of gintonin isolated from stem and leaf through sodium dodecyl sulfate polyacrylamide gel electrophoresis was almost same as that from root but the compositions of amino acids, carbohydrates or lipids differed slightly between them. We also examined the effects of crude gintonin from ginseng root, stem, and leaf on endogenous Ca2+-activated Cl- channel (CaCC) activity of Xenopus oocytes through mobilization of [Ca2+]i. We found that the order of potency for the activation of CaCC was ginseng root > stem > leaf. The ED50 was 1.4±1.4, 4.5±5.9, and 3.9±1.1 μg/mL for root, stem and leaf, respectively. In the present study, we demonstrated for the first time that in addition to ginseng root, ginseng stem and leaf also contain gintonin. Gintonin can be prepared from a simple method with higher yield of gintonin from ginseng root, stem, and leaf. Finally, these results demonstrate the possibility that ginseng stem and leaf could also be utilized for ginstonin preparation after a simple procedure, rather than being discarded.


Journal of Ginseng Research | 2011

Effects of Minor Ginsenosides, Ginsenoside Metabolites, and Ginsenoside Epimers on the Growth of Caenorhabditis elegans

Joon-Hee Lee; Jiyun Ahn; Tae-Joon Shin; Sun-Hye Choi; Byung-Hwan Lee; Sung-Hee Hwang; Jiyeon Kang; Hyeon-Joong Kim; Chan-Woo Park; Seung-Yeol Nah

In the previous report, we have demonstrated that ginsenoside Rc, one of major ginsenosides, is a major component for the restoration for normal growth of worms in cholesterol-deprived medium. In the present study, we further investigated the roles of minor ginsenosides, such as ginsenoside Rh1 and Rh2, ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) and ginsenoside epimers such as 20(R)- and 20(S)-ginsenoside Rg3 in cholesterol-deprived medium. We found that ginsenoside Rh1 almost restored normal growth of worms in cholesterol-deprived medium in F1 generation. However, supplement of ginsenoside Rh2 caused a suppression of worm growths in cholesterol-deprived medium. In addition, CK and PPD also slightly restored normal growth of worms in cholesterol-deprived medium but PPT not. In experiments using ginsenoside epimers, supplement of 20(S)- but not 20(R)-ginsenoside Rg3 in cholesterol-deprived medium also almost restored worm growth. These results indicate that the absence or presence of carbohydrate component at backbone of ginsenoside, the number of carbohydrate attached at carbon-3, and the position of hydroxyl group at carbon-20 of ginsenoside might plays important roles in restoration of worm growth in cholesterol-deprived medium.


European Journal of Pharmacology | 2011

Ginsenoside Rg3 decelerates hERG K+ channel deactivation through Ser631 residue interaction

Sun-Hye Choi; Tae-Joon Shin; Sung-Hee Hwang; Byung-Hwan Lee; Jiyeon Kang; Hyeon-Joong Kim; Su-Hyun Jo; Han Choe; Seung-Yeol Nah

The human ether-a-go-go-related gene (hERG) cardiac K(+) channels are one of the representative pharmacological targets for development of drugs against cardiovascular diseases such as arrhythmia. Panax ginseng has been known to have cardio-protective effects. However, little is known about the molecular mechanisms of how ginsenosides, the active ingredients in Panax ginseng, interact with hERG K(+) channel proteins. In the present study, we first examined the effects of various ginsenosides on hERG K(+) channel activity by expressing human α subunits in Xenopus oocytes. Among them ginsenoside Rg(3) (Rg(3)) most potently enhanced outward I(hERG) and peak I(tail). Rg(3) induced a large persistent deactivating-tail current (I(deactivating-tail)) and profoundly decelerated deactivating current decay in both concentration- and voltage-dependent manners. The EC(50) for steady-state I(hERG), peak I(tail), and persistent I(deactivating-tail) was 0.41±0.05, 0.61±0.11, and 0.36±0.04μM, respectively. Rg(3) actions were blocked by bepridil, a hERG K(+) channel antagonist. Site-directed mutation of S631, which is located at the channel pore entryway, to S631C in hERG K(+) channel abolished Rg(3) actions on hERG K(+) channels. These results indicate that S631 residue of hERG K(+) channel plays an important role in Rg(3)-mediated induction of a persistent I(deactivating-tail) and in a deceleration of hERG K(+) channel deactivation.


Journal of Ginseng Research | 2011

Differential Effects of Ginsenoside Metabolites on HERG K + Channel Currents

Sun-Hye Choi; Tae-Joon Shin; Sung-Hee Hwang; Byung-Hwan Lee; Jiyeon Kang; Hyeon-Joong Kim; Jae-Wook Oh; Chun Sik Bae; Soo-Han Lee; Seung-Yeol Nah

The human ether-a-go-go-related gene (HERG) cardiac K+ channels are one of the representative pharmacological targets for development of drugs against cardiovascular diseases such as arrhythmia. Panax ginseng has been known to exhibit cardioprotective effects. In a previous report we demonstrated that ginsenoside Rg3 regulates HERG K+ channels by decelerating deactivation. However, little is known about how ginsenoside metabolites regulate HERG K+ channel activity. In the present study, we examined the effects of ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) on HERG K+ channel activity by expressing human α subunits in Xenopus oocytes. CK induced a large persistent deactivating-tail current (Ideactivating-tail) and significantly decelerated deactivating current decay in a concentration-dependent manner. The EC50 for persistent Ideactivating-tail was 16.6±1.3 μM. In contrast to CK, PPT accelerated deactivating-tail current deactivation. PPD itself had no effects on deactivating-tail currents, whereas PPD inhibited ginsenoside Rg3-induced persistent Ideactivating-tail and accelerated HERG K+ channel deactivation in a concentration-dependent manner. These results indicate that ginsenoside metabolites exhibit differential regulation on Ideactivating-tail of HERG K+ channel.


The Korean Journal of Physiology and Pharmacology | 2012

Effects of Protopanaxatriol-Ginsenoside Metabolites on Rat N-Methyl-D-Aspartic Acid Receptor-Mediated Ion Currents

Tae Joon Shin; Sung Hee Hwang; Sun Hye Choi; Byung Hwan Lee; Jiyeon Kang; Hyeon Joong Kim; R. Suzanne Zukin; Hyewhon Rhim; Seung Yeol Nah

Ginsenosides are low molecular weight glycosides found in ginseng that exhibit neuroprotective effects through inhibition of N-methyl-D-aspartic acid (NMDA) receptor channel activity. Ginsenosides, like other natural compounds, are metabolized by gastric juices and intestinal microorganisms to produce ginsenoside metabolites. However, little is known about how ginsenoside metabolites regulate NMDA receptor channel activity. In the present study, we investigated the effects of ginsenoside metabolites, such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT), on oocytes that heterologously express the rat NMDA receptor. NMDA receptor-mediated ion current (I(NMDA)) was measured using the 2-electrode voltage clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, PPT, but not CK or PPD, reversibly inhibited I(NMDA) in a concentration-dependent manner. The IC(50) for PPT on I(NMDA) was 48.1±4.6 µM, was non-competitive with NMDA, and was independent of the membrane holding potential. These results demonstrate the possibility that PPT interacts with the NMDA receptor, although not at the NMDA binding site, and that the inhibitory effects of PPT on I(NMDA) could be related to ginseng-mediated neuroprotection.


The Korean Journal of Physiology and Pharmacology | 2011

Quercetin Inhibits α3β4 Nicotinic Acetylcholine Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

Byung-Hwan Lee; Sung-Hee Hwang; Sun-Hye Choi; Tae-Joon Shin; Jiyeon Kang; Sang-Mok Lee; Seung-Yeol Nah

Quercetin mainly exists in the skin of colored fruits and vegetables as one of flavonoids. Recent studies show that quercetin, like other flavonoids, has diverse pharmacological actions. However, relatively little is known about quercetin effects in the regulations of ligand-gated ion channels. In the previous reports, we have shown that quercetin regulates subsets of homomeric ligand-gated ion channels such as glycine, 5-HT(3A) and α7 nicotinic acetylcholine receptors. In the present study, we examined quercetin effects on heteromeric neuronal α3β4 nicotinic acetylcholine receptor channel activity expressed in Xenopus oocytes after injection of cRNA encoding bovine neuronal α3 and β4 subunits. Treatment with acetylcholine elicited an inward peak current (I(ACh)) in oocytes expressing α3β4 nicotinic acetylcholine receptor. Co-treatment with quercetin and acetylcholine inhibited I(ACh) in oocytes expressing α3β4 nicotinic acetylcholine receptors. The inhibition of I(ACh) by quercetin was reversible and concentration-dependent. The half-inhibitory concentration (IC(50)) of quercetin was 14.9±0.8 µM in oocytes expressing α3β4 nicotinic acetylcholine receptor. The inhibition of I(ACh) by quercetin was voltage-independent and non-competitive. These results indicate that quercetin might regulate α3β4 nicotinic acetylcholine receptor and this regulation might be one of the pharmacological actions of quercetin in nervous systems.


Journal of Ginseng Research | 2011

An Edible Gintonin Preparation from Ginseng

Sun-Hye Choi; Tae-Joon Shin; Byung-Hwan Lee; Sung Hee Hwang; Jiyeon Kang; Hyun-Joong Kim; Chan-Woo Park; Seung-Yeol Nah

Ginseng, the root of Panax ginseng, is one of the oldest herbal medicines. It has a variety of physiological and pharmacological effects. Recently, we isolated a subset of glycolipoproteins that we designated gintonin, and demonstrated that it induced transient change in intracellular calcium concentration ([Ca2+]i) in cells via G-protein-coupled receptor signaling pathway(s). The previous method for gintonin isolation included multiple steps using methanol, butanol, and other organic solvents. In the present study, we developed a much simple method for the preparation of gintonin from ginseng root using 80% ethanol extraction. The extracted fraction was designated edible gintonin. This method produced a high yield of gintonin (0.20%). The chemical characteristics of gintonin such as molecular weight and the composition of the extract product were almost identical as the gintonin prepared using the previous extraction regimen involving various organic solvents. We also examined the physiological effects of edible gintonin on endogenous Ca2+-activated Cl- channel activity of Xenopus oocytes. The 50% effective dose was 1.03±0.3 μg/mL. Finally, since gintonin preparation through ethanol extraction is easily reproducible, gintonin could be commercially applied for ginseng-derived functional health food and/or drug following the confirmations of in vitro and in vivo physiological and pharmacological effects of gintonin.


Journal of Ginseng Research | 2012

Effects of Ginsenoside Metabolites on GABA A Receptor-Mediated Ion Currents

Byung-Hwan Lee; Sun-Hye Choi; Tae-Joon Shin; Sung-Hee Hwang; Jiyeon Kang; Hyeon-Joong Kim; Byung-Ju Kim; Seung-Yeol Nah

In a previous report, we demonstrated that ginsenoside Rc, one of major ginsenosides from Panax ginseng, enhances γ-aminobutyric acid (GABA) receptorA (GABAA)-mediated ion channel currents. However, little is known about the effects of ginsenoside metabolites on GABAA receptor channel activity. The present study investigated the effects of ginsenoside metabolites on human recombinant GABAA receptor (α1β1γ2s) channel activity expressed in Xenopus oocytes using a two-electrode voltage clamp technique. M4, a metabolite of protopanaxatriol ginsenosides, more potently inhibited the GABA-induced inward peak current (IGABA) than protopanaxadiol (PPD), a metabolite of PPD ginsenosides. The effect of M4 and PPD on IGABA was both concentration-dependent and reversible. The half-inhibitory concentration (IC50) values of M4 and PPD were 17.1±2.2 and 23.1±8.6 μM, respectively. The inhibition of IGABA by M4 and PPD was voltage-independent and non-competitive. This study implies that the regulation of GABAA receptor channel activity by ginsenoside metabolites differs from that of ginsenosides.

Collaboration


Dive into the Jiyeon Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyoung-Chun Kim

Kangwon National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge