Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiyoung Mun is active.

Publication


Featured researches published by Jiyoung Mun.


Neuropsychopharmacology | 2013

Chronic Interferon- α Decreases Dopamine 2 Receptor Binding and Striatal Dopamine Release in Association with Anhedonia-Like Behavior in Nonhuman Primates

Jennifer C. Felger; Jiyoung Mun; Heather L. Kimmel; Jonathon A. Nye; Daniel F. Drake; Carla R. Hernandez; Amanda A. Freeman; David B. Rye; Mark M. Goodman; Leonard L. Howell; Andrew H. Miller

Neuroimaging studies in humans have demonstrated that inflammatory cytokines target basal ganglia function and presynaptic dopamine (DA), leading to symptoms of depression. Cytokine-treated nonhuman primates also exhibit evidence of altered DA metabolism in association with depressive-like behaviors. To further examine cytokine effects on striatal DA function, eight rhesus monkeys (four male, four female) were administered interferon (IFN)-α (20 MIU/m2 s.c.) or saline for 4 weeks. In vivo microdialysis was used to investigate IFN-α effects on DA release in the striatum. In addition, positron emission tomography (PET) with [11C]raclopride was used to examine IFN-α-induced changes in DA2 receptor (D2R) binding potential before and after intravenous amphetamine administration. DA transporter binding was measured by PET using [18F]2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-fluoroethyl)nortropane. Anhedonia-like behavior (sucrose consumption) was assessed during saline and IFN-α administration. In vivo microdialysis demonstrated decreased release of DA after 4 weeks of IFN-α administration compared with saline. PET neuroimaging also revealed decreased DA release after 4 weeks of IFN-α as evidenced by reduced displacement of [11C]raclopride following amphetamine administration. In addition, 4 weeks of IFN-α was associated with decreased D2R binding but no change in the DA transporter. Sucrose consumption was reduced during IFN-α administration and was correlated with decreased DA release at 4 weeks as measured by in vivo microdialysis. Taken together, these findings indicate that chronic peripheral IFN-α exposure reduces striatal DA release in association with anhedonia-like behavior in nonhuman primates. Future studies examining the mechanisms of cytokine effects on DA release and potential therapeutic strategies to reverse these changes are warranted.


Clinical Cancer Research | 2012

Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signaling by disrupting HIF-1α interaction with cofactors p300/CBP.

Shaoman Yin; Stefan Kaluz; Narra S. Devi; Adnan A. Jabbar; Rita G. de Noronha; Jiyoung Mun; Zhaobin Zhang; Purushotham R. Boreddy; Wei Wang; Zhibo Wang; Thomas J. Abbruscato; Zhengjia Chen; Jeffrey J. Olson; Ruiwen Zhang; Mark M. Goodman; K. C. Nicolaou; Erwin G. Van Meir

Purpose: The hypoxia-inducible factor-1 (HIF-1) plays a critical role in tumor adaptation to hypoxia, and its elevated expression correlates with poor prognosis and treatment failure in patients with cancer. In this study, we determined whether 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, KCN1, the lead inhibitor in a novel class of arylsulfonamide inhibitors of the HIF-1 pathway, had antitumorigenic properties in vivo and further defined its mechanism of action. Experimental Design: We studied the inhibitory effect of systemic KCN1 delivery on the growth of human brain tumors in mice. To define mechanisms of KCN1 anti-HIF activities, we examined its influence on the assembly of a functional HIF-1α/HIF-1β/p300 transcription complex. Results: KCN1 specifically inhibited HIF reporter gene activity in several glioma cell lines at the nanomolar level. KCN1 also downregulated transcription of endogenous HIF-1 target genes, such as VEGF, Glut-1, and carbonic anhydrase 9, in a hypoxia-responsive element (HRE)-dependent manner. KCN1 potently inhibited the growth of subcutaneous malignant glioma tumor xenografts with minimal adverse effects on the host. It also induced a temporary survival benefit in an intracranial model of glioma but had no effect in a model of melanoma metastasis to the brain. Mechanistically, KCN1 did not downregulate the levels of HIF-1α or other components of the HIF transcriptional complex; rather, it antagonized hypoxia-inducible transcription by disrupting the interaction of HIF-1α with transcriptional coactivators p300/CBP. Conclusions: Our results suggest that the new HIF pathway inhibitor KCN1 has antitumor activity in mouse models, supporting its further translation for the treatment of human tumors displaying hypoxia or HIF overexpression. Clin Cancer Res; 18(24); 6623–33. ©2012 AACR.


Journal of Medicinal Chemistry | 2009

Synthesis, radiosynthesis, and biological evaluation of carbon-11 and fluorine-18 labeled reboxetine analogues: potential positron emission tomography radioligands for in vivo imaging of the norepinephrine transporter.

Fanxing Zeng; Jiyoung Mun; Nashwa Jarkas; Jeffrey S. Stehouwer; Ronald J. Voll; Gilles Tamagnan; Leonard L. Howell; John R. Votaw; Clinton D. Kilts; Charles B. Nemeroff; Mark M. Goodman

Reboxetine analogues with methyl and fluoroalkyl substituents at position 2 of the phenoxy ring 1-4 were synthesized. In vitro competition binding with [(3)H]nisoxetine demonstrated that 1-4 have a high affinity for the norepinephrine transporter (NET) with K(i)s = 1.02, 3.14, 3.68, and 0.30 nM, respectively. MicroPET imaging in rhesus monkeys showed that the relative regional distribution of [(11)C]1 and [(11)C]4 is consistent with distribution of the NET in the brain, while [(18)F]2 and [(18)F]3 showed only slight regional differentiation in brain uptake. Especially, the highest ratios of uptake of [(11)C]1 in NET-rich regions to that in caudate were obtained at 1.30-1.45 at 45 min and remained relatively constant over 85 min. Pretreatment of the monkey with the selective NET inhibitor, desipramine, decreased the specific binding for both [(11)C]1 and [(11)C]4. PET imaging in awake monkeys suggested that anesthesia influenced the binding potential of [(11)C]1 and [(11)C]4 at the NET.


Bioorganic & Medicinal Chemistry | 2012

Structure-activity relationship of 2,2-dimethyl-2H-chromene based arylsulfonamide analogs of 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, a novel small molecule hypoxia inducible factor-1 (HIF-1) pathway inhibitor and anti-cancer agent.

Jiyoung Mun; Adnan A. Jabbar; Narra S. Devi; Yuan Liu; Erwin G. Van Meir; Mark M. Goodman

We have discovered that 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, a novel small molecule HIF-1 pathway inhibitor, can antagonize tumor growth in animal models of cancer, but the treatment necessitates its delivery in a formulation, due to poor water solubility (<15 μg/mL; pH 7.4), evidencing that the chemotype needs further exploration of its amenability to additional chemical modifications for ultimate optimization of function and pharmacology. As a first step towards this goal we investigated the structure-activity relationships of 15 lipophilic 2,2-dimethyl-2H-chromene based arylsulfonamide analogs of 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide to find out strategies of modification. A 3,4-dimethoxybenzenesulfonyl group in region 1 showed the strongest inhibition among five arylsulfonyl groups tested. The presence of propan-2-amine in region 2 conferred the strongest inhibitory effect of the compound on HIF-1 activated transcription in a reporter assay. These findings are important as they help define the structural motifs where the 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide can be chemically modified to improve its pharmacological properties towards development as a cancer therapeutic.


Journal of Medicinal Chemistry | 2012

Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel, small-molecule hypoxia inducible factor-1 pathway inhibitors and anticancer agents.

Jiyoung Mun; Adnan A. Jabbar; Narra S. Devi; Shaoman Yin; Yingzhe Wang; Chalet Tan; Deborah G. Culver; James P. Snyder; Erwin G. Van Meir; Mark M. Goodman

The hypoxia inducible factor (HIF) pathway is an attractive target for cancer, as it controls tumor adaptation to growth under hypoxia and mediates chemotherapy and radiation resistance. We previously discovered 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide as a novel, small-molecule HIF-1 pathway inhibitor in a high-throughput cell-based assay, but its in vivo delivery is hampered by poor aqueous solubility (0.009 μM in water; log P(7.4) = 3.7). Here we describe the synthesis of 12 N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, which were designed to possess optimal lipophilicities and aqueous solubilities by in silico calculations. Experimental log P(7.4) values of 8 of the 12 new analogs ranged from 1.2-3.1. Aqueous solubilities of three analogs were measured, among which the most soluble N-[(8-methoxy-2,2-dimethyl-2H-chromen-6-yl)methyl]-N-(propan-2-yl)pyridine-2-sulfonamide had an aqueous solubility of 80 μM, e.g., a solubility improvement of ∼9000-fold. The pharmacological optimization had limited impact on drug efficacy as the compounds retained IC(50) values at or below 5 μM in our HIF-dependent reporter assay.


Neuropsychopharmacology | 2012

Neurobiological Changes Mediating the Effects of Chronic Fluoxetine on Cocaine Use

Eileen K. Sawyer; Jiyoung Mun; Jonathon A. Nye; Heather L. Kimmel; Ronald J. Voll; Jeffrey S. Stehouwer; Kenner C. Rice; Mark M. Goodman; Leonard L. Howell

Acute SSRI (selective serotonin reuptake inhibitor) treatment has been shown to attenuate the abuse-related effects of cocaine; however, SSRIs have had limited success in clinical trials for cocaine abuse, possibly due to neurobiological changes that occur during chronic administration. In order to better understand the role of serotonin (5HT) in cocaine abuse and treatment, we examined the effects of chronic treatment with the SSRI fluoxetine at clinically relevant serum concentrations on cocaine-related neurobiology and behavior. Rhesus macaques self-administering cocaine underwent a 6-week dosing regimen with fluoxetine designed to approximate serum concentrations observed in humans. Self-administration and reinstatement were monitored throughout the treatment and washout period. In vivo microdiaylsis was used to assess changes in dopaminergic and serotonergic neurochemistry. Positron emission tomography was used to assess changes in the 5HT transporter and 2A receptor binding potential (BP). Functional output of the 5HT system was assessed using prolactin levels. Cocaine-primed reinstatement and cocaine-elicited dopamine overflow were significantly suppressed following chronic fluoxetine treatment. 5HT2A receptor BP was increased in the frontal cortex following treatment while prolactin release was blunted, suggesting desensitization of the 5HT2A receptor. These effects persisted after a 6-week washout period. Measures of pre-synaptic serotonergic function and cocaine self-administration were unaffected. These data demonstrate that acute and chronic fluoxetine treatments exert different effects on cocaine-related behavior. Furthermore, chronic fluoxetine treatment causes alterations in 5HT2A receptors in the frontal cortex that may selectively disrupt cocaine-primed reinstatement. Fluoxetine may not be useful for treatment of ongoing cocaine abuse but may be useful in relapse prevention.


Neuroscience | 2013

The relation of developmental changes in brain serotonin transporter (5HTT) and 5HT1A receptor binding to emotional behavior in female rhesus monkeys: Effects of social status and 5HTT genotype

Molly Embree; Vasiliki Michopoulos; John R. Votaw; Ronald J. Voll; Jiyoung Mun; Jeffrey S. Stehouwer; Mark M. Goodman; Mark E. Wilson; Mar M. Sanchez

The goal of the present study was to examine how social subordination stress and 5HTT polymorphisms affect the development of brain serotonin (5HT) systems during the pubertal transition in female rhesus monkeys. We also examined associations with developmental changes in emotional reactivity in response to a standardized behavioral test, the Human Intruder (HI). Our findings provide the first longitudinal evidence of developmental increases in 5HT1A receptor and 5HTT binding in the brain of female primates from pre- to peripuberty. The increase in 5HT1A BP(ND) in these socially housed female rhesus monkeys is a robust finding, occurring across all groups, regardless of social status or 5HTT genotype, and occurring in the left and right hemispheres of all prefrontal regions studied, as well as the amygdala, hippocampus, hypothalamus, and raphe nuclei. 5HTT BP(ND) also showed an increase with age in raphe, anterior cingulate cortex, and dorsolateral prefrontal cortex. These changes in brain 5HT systems take place as females establish more adult-like patterns of social behavior, as well as during the HI paradigm. Indeed, the main developmental changes in behavior during the HI (increase in freezing and decrease in submission/appeasement) were related to neurodevelopmental increases in 5HT1A receptors and 5HTT, because the associations between these behaviors and 5HT endpoints emerge at peripuberty. We detected an effect of social status on 5HT1A BP(ND) in the hypothalamus and on 5HTT BP(ND) in the orbitofrontal cortex, with subordinates showing higher BP(ND) than dominants in both cases during the pubertal transition. No main effects of 5HTT genotype were observed for 5HT1A or 5HTT BP(ND). Our findings indicate that adolescence in female rhesus monkeys is a period of central 5HT reorganization, partly influenced by exposure to the social stress of subordination, that likely functions to integrate adrenal and gonadal systems and shape the behavioral response to emotionally challenging social situations.


ACS Medicinal Chemistry Letters | 2012

Binding Model for the Interaction of Anticancer Arylsulfonamides with the p300 Transcription Cofactor

Qi Shi; Shaoman Yin; Stefan Kaluz; Nanting Ni; Narra S. Devi; Jiyoung Mun; Danzhu Wang; Krishna Damera; Weixuan Chen; Sarah Burroughs; Suazette Reid Mooring; Mark M. Goodman; Erwin G. Van Meir; Binghe Wang; James P. Snyder

Hypoxia inducible factors (HIFs) are transcription factors that activate expression of multiple gene products and promote tumor adaptation to a hypoxic environment. To become transcriptionally active, HIFs associate with cofactors p300 or CBP. Previously, we found that arylsulfonamides can antagonize HIF transcription in a bioassay, block the p300/HIF-1α interaction, and exert potent anticancer activity in several animal models. In the present work, KCN1-bead affinity pull down, (14)C-labeled KCN1 binding, and KCN1-surface plasmon resonance measurements provide initial support for a mechanism in which KCN1 can bind to the CH1 domain of p300 and likely prevent the p300/HIF-1α assembly. Using a previously reported NMR structure of the p300/HIF-1α complex, we have identified potential binding sites in the p300-CH1 domain. A two-site binding model coupled with IC50 values has allowed establishment of a modest ROC-based enrichment and creation of a guide for future analogue synthesis.


Synapse | 2012

Simultaneous measurement of extracellular dopamine and dopamine transporter occupancy by cocaine analogs in squirrel monkeys

Heather L. Kimmel; Jonathon A. Nye; Ronald J. Voll; Jiyoung Mun; Jeffrey S. Stehouwer; Mark M. Goodman; John R. Votaw; F Carroll; Leonard L. Howell

Several classes of drugs bind to the dopamine transporter (DAT) with high affinity, but some are weaker positive reinforcers than cocaine, suggesting that affinity for and occupancy of the DAT is not the only determinant of a drugs reinforcing effectiveness. Other factors such as the rate of onset have been positively and strongly correlated with the reinforcing effects of DAT inhibitors in nonhuman primates. In the current studies, we examined the effects of acute systemic administration of cocaine and three cocaine analogs (RTI‐150, RTI‐177, and RTI‐366) on binding to DAT in squirrel monkey brain using positron emission tomography (PET) neuroimaging. During the PET scan, we also measured drug effects on dopamine (DA) levels in the caudate using in vivo microdialysis. In general, our results suggest a lack of concordance between drug occupancy at DAT and changes in DA levels. These studies also indicate that acute cocaine administration decreases the availability of plasma membrane DAT for binding, even after cocaine is no longer blocking DA uptake as evidence by a return to basal DA levels. Synapse, 2012.


Translational Psychiatry | 2014

A thermostable bacterial cocaine esterase rapidly eliminates cocaine from brain in nonhuman primates.

Leonard L. Howell; Jonathon A. Nye; Jeffrey S. Stehouwer; Ronald J. Voll; Jiyoung Mun; D. Narasimhan; J. Nichols; R. Sunahara; Mark M. Goodman; F.I. Carroll; James H. Woods

A long-acting, thermostable bacterial cocaine esterase (CocE) has been identified that rapidly degrades cocaine with a KM of 1.33+0.085 μM. In vivo evaluation of CocE has shown protection against convulsant and lethal effects of cocaine in rodents, confirming the therapeutic potential of CocE against cocaine overdose. However, the current study is the first to evaluate the effects of CocE on cocaine brain levels. Positron emission tomogrpahy neuroimaging of [11C]cocaine was used to evaluate the time course of cocaine elimination from brain in the presence and absence of CocE in nonhuman primates. Systemic administration of CocE eliminated cocaine from the rhesus-monkey brain approximately three times faster than control conditions via peripheral actions through attenuating the input function from blood plasma. The efficiency of this process is sufficient to alleviate or prevent adverse central nervous system effects induced by cocaine. Although the present study used tracer doses of cocaine to access brain clearance, these findings further support the development of CocE for the treatment of acute cocaine toxicity.

Collaboration


Dive into the Jiyoung Mun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather L. Kimmel

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge