Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiyuan Ke is active.

Publication


Featured researches published by Jiyuan Ke.


Nature | 2015

Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

Yanyong Kang; X. Edward Zhou; Xiang Gao; Yuanzheng He; Wei Liu; Andrii Ishchenko; Anton Barty; Thomas A. White; Oleksandr Yefanov; Gye Won Han; Qingping Xu; Parker W. de Waal; Jiyuan Ke; M. H.Eileen Tan; Chenghai Zhang; Arne Moeller; Graham M. West; Bruce D. Pascal; Ned Van Eps; Lydia N. Caro; Sergey A. Vishnivetskiy; Regina J. Lee; Kelly Suino-Powell; Xin Gu; Kuntal Pal; Jinming Ma; Xiaoyong Zhi; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin–arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Nature | 2013

Structural basis for molecular recognition of folic acid by folate receptors

Chen Chen; Jiyuan Ke; X. Edward Zhou; Wei Yi; Joseph S. Brunzelle; Jun Li; Eu Leong Yong; H. Eric Xu; Karsten Melcher

Folate receptors (FRα, FRβ and FRγ) are cysteine-rich cell-surface glycoproteins that bind folate with high affinity to mediate cellular uptake of folate. Although expressed at very low levels in most tissues, folate receptors, especially FRα, are expressed at high levels in numerous cancers to meet the folate demand of rapidly dividing cells under low folate conditions. The folate dependency of many tumours has been therapeutically and diagnostically exploited by administration of anti-FRα antibodies, high-affinity antifolates, folate-based imaging agents and folate-conjugated drugs and toxins. To understand how folate binds its receptors, we determined the crystal structure of human FRα in complex with folic acid at 2.8 Å resolution. FRα has a globular structure stabilized by eight disulphide bonds and contains a deep open folate-binding pocket comprised of residues that are conserved in all receptor subtypes. The folate pteroate moiety is buried inside the receptor, whereas its glutamate moiety is solvent-exposed and sticks out of the pocket entrance, allowing it to be conjugated to drugs without adversely affecting FRα binding. The extensive interactions between the receptor and ligand readily explain the high folate-binding affinity of folate receptors and provide a template for designing more specific drugs targeting the folate receptor system.


Trends in Endocrinology and Metabolism | 2013

LRP5 and LRP6 in development and disease.

Danese M. Joiner; Jiyuan Ke; Zhendong Zhong; H. Eric Xu; Bart O. Williams

Low-density lipoprotein-related receptors 5 and 6 (LRP5/6) are highly homologous proteins with key functions in canonical Wnt signaling. Alterations in the genes encoding these receptors or their interacting proteins are linked to human diseases, and as such they have been a major focus of drug development efforts to treat several human conditions including osteoporosis, cancer, and metabolic disease. Here, we discuss the links between alterations in LRP5/6 and disease, proteins that interact with them, and insights gained into their function from mouse models. We also highlight current drug development related to LRP5/6 as well as how the recent elucidation of their crystal structures may allow further refinement of our ability to target them for therapeutic benefit.


Cell Research | 2015

Structural basis of AMPK regulation by adenine nucleotides and glycogen

Xiaodan Li; Lili Wang; X. Edward Zhou; Jiyuan Ke; Parker W. de Waal; Xin Gu; M. H.Eileen Tan; Dongye Wang; Donghai Wu; H. Eric Xu; Karsten Melcher

AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Together, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.


Nature | 2015

Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling

Feng Zhang; Jian Yao; Jiyuan Ke; Li Zhang; Vinh Q. Lam; Xiu Fang Xin; X. Edward Zhou; Jian Chen; Joseph S. Brunzelle; Patrick R. Griffin; Mingguo Zhou; H. Eric Xu; Karsten Melcher; Sheng Yang He

The plant hormone jasmonate plays crucial roles in regulating plant responses to herbivorous insects and microbial pathogens and is an important regulator of plant growth and development. Key mediators of jasmonate signalling include MYC transcription factors, which are repressed by jasmonate ZIM-domain (JAZ) transcriptional repressors in the resting state. In the presence of active jasmonate, JAZ proteins function as jasmonate co-receptors by forming a hormone-dependent complex with COI1, the F-box subunit of an SCF-type ubiquitin E3 ligase. The hormone-dependent formation of the COI1–JAZ co-receptor complex leads to ubiquitination and proteasome-dependent degradation of JAZ repressors and release of MYC proteins from transcriptional repression. The mechanism by which JAZ proteins repress MYC transcription factors and how JAZ proteins switch between the repressor function in the absence of hormone and the co-receptor function in the presence of hormone remain enigmatic. Here we show that Arabidopsis MYC3 undergoes pronounced conformational changes when bound to the conserved Jas motif of the JAZ9 repressor. The Jas motif, previously shown to bind to hormone as a partly unwound helix, forms a complete α-helix that displaces the amino (N)-terminal helix of MYC3 and becomes an integral part of the MYC N-terminal fold. In this position, the Jas helix competitively inhibits MYC3 interaction with the MED25 subunit of the transcriptional Mediator complex. Our structural and functional studies elucidate a dynamic molecular switch mechanism that governs the repression and activation of a major plant hormone pathway.


Nature Structural & Molecular Biology | 2013

Structural basis for RNA recognition by a dimeric PPR-protein complex.

Jiyuan Ke; Run Ze Chen; Ting Ban; X. Edward Zhou; Xin Gu; M. H.Eileen Tan; Chen Chen; Yanyong Kang; Joseph S. Brunzelle; Jian-Kang Zhu; Karsten Melcher; H. Eric Xu

Thylakoid assembly 8 (THA8) is a pentatricopeptide repeat (PPR) RNA-binding protein required for the splicing of the transcript of ycf3, a gene involved in chloroplast thylakoid-membrane biogenesis. Here we report the identification of multiple THA8-binding sites in the ycf3 intron and present crystal structures of Brachypodium distachyon THA8 either free of RNA or bound to two of the identified RNA sites. The apostructure reveals a THA8 monomer with five tandem PPR repeats arranged in a planar fold. The complexes of THA8 bound to the two short RNA fragments surprisingly reveal asymmetric THA8 dimers with the bound RNAs at the dimeric interface. RNA binding induces THA8 dimerization, with a conserved G nucleotide of the bound RNAs making extensive contacts with both monomers. Together, these results establish a new model of RNA recognition by RNA-induced formation of an asymmetric dimer of a PPR protein.


Genes & Development | 2013

Structure and function of Norrin in assembly and activation of a Frizzled 4-Lrp5/6 complex.

Jiyuan Ke; Kaleeckal G. Harikumar; Clara Erice; Chen Chen; Xin Gu; Liren Wang; Naomi R. Parker; Zhihong Cheng; Wenqing Xu; Bart O. Williams; Karsten Melcher; Laurence J. Miller; H. Eric Xu

Norrin is a cysteine-rich growth factor that is required for angiogenesis in the eye, ear, brain, and female reproductive organs. It functions as an atypical Wnt ligand by specifically binding to the Frizzled 4 (Fz4) receptor. Here we report the crystal structure of Norrin, which reveals a unique dimeric structure with each monomer adopting a conserved cystine knot fold. Functional studies demonstrate that the novel Norrin dimer interface is required for Fz4 activation. Furthermore, we demonstrate that Norrin contains separate binding sites for Fz4 and for the Wnt ligand coreceptor Lrp5 (low-density lipoprotein-related protein 5) or Lrp6. Instead of inducing Fz4 dimerization, Norrin induces the formation of a ternary complex with Fz4 and Lrp5/6 by binding to their respective extracellular domains. These results provide crucial insights into the assembly and activation of the Norrin-Fz4-Lrp5/6 signaling complex.


Journal of Biological Chemistry | 2013

Structure of a PLS-class Pentatricopeptide Repeat Protein Provides Insights into Mechanism of RNA Recognition

Ban T; Jiyuan Ke; Chen R; Xin Gu; Tan Mh; X.E Zhou; Yanyong Kang; Karsten Melcher; Jian-Kang Zhu; Xu He

Background: Pentatricopeptide repeat (PPR) proteins are sequence-specific RNA-binding proteins involved in organelle RNA processing. Results: We identified RNA-binding sites of a small PPR protein (THA8L) from Arabidopsis thaliana and solved its crystal structure. Conclusion: THA8L-RNA binding is dependent on a combination of specific nucleotide base interactions and nonspecific backbone interactions. Significance: This work advances our understanding of the mechanism of PPR protein-RNA interaction. Pentatricopeptide repeat (PPR) proteins are sequence-specific RNA-binding proteins that form a pervasive family of proteins conserved in yeast, plants, and humans. The plant PPR proteins are grouped mainly into the P and PLS classes. Here, we report the crystal structure of a PLS-class PPR protein from Arabidopsis thaliana called THA8L (THA8-like) at 2.0 Å. THA8L resembles THA8 (thylakoid assembly 8), a protein that is required for the splicing of specific group II introns of genes involved in biogenesis of chloroplast thylakoid membranes. The THA8L structure contains three P-type PPR motifs flanked by one L-type motif and one S-type motif. We identified several putative THA8L-binding sites, enriched with purine sequences, in the group II introns. Importantly, THA8L has strong binding preference for single-stranded RNA over single-stranded DNA or double-stranded RNA. Structural analysis revealed that THA8L contains two extensive patches of positively charged residues next to the residues that are proposed to comprise the RNA-binding codes. Mutations in these two positively charged patches greatly reduced THA8L RNA-binding activity. On the basis of these data, we constructed a model of THA8L-RNA binding that is dependent on two forces: one is the interaction between nucleotide bases and specific amino acids in the PPR motifs (codes), and the other is the interaction between the negatively charged RNA backbone and positively charged residues of PPR motifs. Together, these results further our understanding of the mechanism of PPR protein-RNA interactions.


PLOS ONE | 2012

Modulation of β-Catenin Signaling by Glucagon Receptor Activation

Jiyuan Ke; Chenghai Zhang; Kaleeckal G. Harikumar; Cassandra R. Zylstra-Diegel; Liren Wang; Laura E. Mowry; Laurence J. Miller; Bart O. Williams; H. Eric Xu

The glucagon receptor (GCGR) is a member of the class B G protein–coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA) pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin–mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R) and glucagon-like peptide 1 (GLP-1R) receptors. Since low-density-lipoprotein receptor–related protein 5 (Lrp5) is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter–mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1) or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.


Journal of Biological Chemistry | 2015

Structural and Functional Study of d-Glucuronyl C5-epimerase.

Yi Qin; Jiyuan Ke; Xin Gu; Jianping Fang; Wucheng Wang; Qifei Cong; Jie Li; Jinzhi Tan; Joseph S. Brunzelle; Chenghai Zhang; Yi Jiang; Karsten Melcher; J Li; H. Eric Xu; Kan Ding

Background: d-Glucuronyl C5-epimerase is a crucial modifying enzyme in the heparan sulfate biosynthesis pathway. Results: We determined the Glce apo-structure and the structure of Glce complexed with a heparin hexasaccharide. Conclusion: Glce forms a dimer with the active sites located at both C-terminal α-helical domains. Significance: This work advances understanding of the key epimerization step in heparan sulfate biosynthesis. Heparan sulfate (HS) is a glycosaminoglycan present on the cell surface and in the extracellular matrix, which interacts with diverse signal molecules and is essential for many physiological processes including embryonic development, cell growth, inflammation, and blood coagulation. d-Glucuronyl C5-epimerase (Glce) is a crucial enzyme in HS synthesis, converting d-glucuronic acid to l-iduronic acid to increase HS flexibility. This modification of HS is important for protein ligand recognition. We have determined the crystal structures of Glce in apo-form (unliganded) and in complex with heparin hexasaccharide (product of Glce following O-sulfation), both in a stable dimer conformation. A Glce dimer contains two catalytic sites, each at a positively charged cleft in C-terminal α-helical domains binding one negatively charged hexasaccharide. Based on the structural and mutagenesis studies, three tyrosine residues, Tyr468, Tyr528, and Tyr546, in the active site were found to be crucial for the enzymatic activity. The complex structure also reveals the mechanism of product inhibition (i.e. 2-O- and 6-O-sulfation of HS keeps the C5 carbon of l-iduronic acid away from the active-site tyrosine residues). Our structural and functional data advance understanding of the key modification in HS biosynthesis.

Collaboration


Dive into the Jiyuan Ke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Gu

Van Andel Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge