Jiyue Cao
Huazhong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiyue Cao.
Frontiers in Pharmacology | 2017
Zhixin Lei; Qianying Liu; Bing Yang; Shuaike Yang; Qianqian Zhu; Kun Li; Shishuo Zhang; Jiyue Cao; Qigai He
The aim of this study was to evaluate the activity of marbofloxacin and establish the optimal dose regimens for decreasing the development of fluoroquinolone resistance in pigs against Escherichia coli with ex vivo pharmacokinetic/pharmacodynamic (PK/PD) modeling. The recommended dose (2 mg/kg body weight) of marbofloxacin was orally administered in healthy pigs. The ileum content and plasma were both collected for the determination of marbofloxacin. The main parameters of Cmax, AUC0-24 h, AUC, Ke, t1/2ke, MRT and Clb were 11.28 μg/g, 46.15, 77.81 μg⋅h/g, 0.001 h-1, 69.97 h, 52.45 h, 0.026 kg/h in ileum content, and 0.55 μg/ml, 8.15, 14.67 μg⋅h/ml, 0.023 h-1, 30.67 h, 34.83 h, 0.14 L/h in plasma, respectively In total, 218 E. coli strains were isolated from most cities of China. The antibacterial activity in vitro and ex vivo of marbofloxacin against E. coli was determined following CLSI guidance. The MIC90 of sensitive strains (142) was calculated as 2 μg/ml. The minimum inhibitory concentration (MIC) of HB197 was 2 and 4 μg/ml in broth and ileum fluids, respectively. In vitro mutant prevention concentration, growth and killing-time in vitro and ex vivo of marbofloxacin against selected HB197 were assayed for pharmacodynamic studies. According to the inhibitory sigmoid Emax modeling, the value of AUC0-24 h/MIC produced in ileum content was achieved, and bacteriostatic, bactericidal activity, and elimination were calculated as 16.26, 23.54, and 27.18 h, respectively. Based on Monte Carlo simulations to obtain 90% target attainment rate, the optimal doses to achieve bacteriostatic, bactericidal, and elimination effects were 0.85, 1.22, and 1.41 mg/kg.bw for 50% target, respectively, and 0.92, 1.33, and 1.53 mg/kg.bw for 90% target, respectively, after oral administration. The results in this study provided a more optimized alternative for clinical use and demonstrated that the dosage 2 mg/kg of marbofloxacin by oral administration could have an effect on bactericidal activity against E. coli.
Scientific Reports | 2017
Zhixin Lei; Shulin Fu; Bing Yang; Qianying Liu; Saeed Ahmed; Lei Xu; Jiyue Cao; Yinsheng Qiu
Numerous studies have been conducted to examine the molecular mechanism of Haemophilus parasuis resistance to antibiotic, but rarely to tildipirosin. In the current study, transcriptional profiling was applied to analyse the variation in gene expression of JS0135 and tildipirosin-resistant JS32. The growth curves showed that JS32 had a higher growth rate but fewer bacteria than JS0135. The cell membranes of JS32 and a resistant clinical isolate (HB32) were observed to be smoother than those of JS0135. From the comparative gene expression profile 349 up- and 113 downregulated genes were observed, covering 37 GO and 63 KEGG pathways which are involved in biological processes (11), cellular components (17), molecular function (9), cellular processes (1), environmental information processing (4), genetic information processing (9) and metabolism (49) affected in JS32. In addition, the relative overexpression of genes of the metabolism pathway (HAPS_RS09315, HAPS_RS09320), ribosomes (HAPS_RS07815) and ABC transporters (HAPS_RS10945) was detected, particularly the metabolism pathway, and verified with RT-qPCR. Collectively, the gene expression profile in connection with tildipirosin resistance factors revealed unique and highly resistant determinants of H. parasuis to macrolides that warrant further attention due to the significant threat of bacterial resistance.
Frontiers in Veterinary Science | 2017
Zhixin Lei; Qianying Liu; Bing Yang; Saeed Ahmed; Tingting Song; Pin Chen; Jiyue Cao; Qigai He
The aim of this study was to explore the bioequivalence of long-acting oxytetracycline in two formulations, a reference formulation (Terramycin 20% LA, Pfizer) and a test one (Kangtekang 20% LA, Huishen). Both formulations were administered intramuscularly at 20u2009mg/kg body weight at each of 24 healthy animals during a two-period crossover parallel experimental design. The oxytetracycline (OTC) concentrations in plasma were measured by high-performance liquid chromatography, and the limit of quantification was 0.05u2009µg/ml with a recovery ratio of above 90%. Moreover, the descriptive pharmacokinetics parameters (Cmax, AUC0–144h, and AUC0–∞) were calculated and compared under analysis of variance, and 90% confidence interval (CI) were compared, except for Tmax analyzed by non-parametric tests based on Wilcoxons’s signed rank test. The comparison results of Cmax, AUC0–144h, AUC0–∞, and Tmax were 5.066u2009±u20090.486, 5.071u2009±u20090.877u2009µg/ml, 118.926u2009±u200913.259, 126.179u2009±u200917.390u2009µg h/ml, 123.087u2009±u200913.906, 130.732u2009±u200918.562u2009µg h/ml, 0.740u2009±u20090.278, 0.650u2009±u20090.258u2009h, respectively, and did not reveal any significant differences. In addition, 90% CIs of these ratios for reference and test product were within an interval of 80–125%, and the relative bioavailability of test one was (94.291u2009±u200915.287)%. Therefore, it has been concluded that test OTC was bioequivalent to the reference formulation in pigs.
Frontiers in Pharmacology | 2017
Zhixin Lei; Qianying Liu; Bing Yang; Kun Li; Saeed Ahmed; Liping Hong; Pin Chen; Qigai He; Jiyue Cao
A new, more palatable formulation of 10% enrofloxacin enteric-coated granules was investigated to evaluate the pharmacokinetic effect in plasma, the residue elimination in tissues and the clinical efficacy against Actinobacillus pleuropneumonia (APP) and Mycoplasam suis (MS) in pigs. In this study, the enrofloxacin concentrations in plasma and tissues were detected using high-performance liquid chromatography with phosphate buffer (pH = 3) and acetonitrile. The pharmacokinetics and elimination of enrofloxacin enteric-coated granules were performed after oral administration at a single dose of 10 mg/kg body weight (bw) and 5 mg/kg twice per day for 5 consecutive days, respectively. The in vivo antibacterial efficacy and clinical effectiveness of enrofloxacin enteric-coated granules against APP and MS were assayed at 2.5, 5, 10 mg/kg, compared with tiamulin (8 mg/kg) based on establishment of APP and MS infection models. 56 APP strains were selected and tested for in vitro antibacterial activity of enrofloxacin enteric-coated granules. The main parameters of elimination half-life (t1/2β), Tmax, and area under the curve (AUC) were 14.99 ± 4.19, 3.99 ± 0.10, and 38.93 ± 1.52 μg h/ml, respectively, revealing that the enrofloxacin concentration remained high and with a sustainable distribution in plasma. Moreover, the analysis on the evaluation of enrofloxacin and ciprofloxacin in muscle, fat, liver and kidney showed that the recovery were more than 84% recovery in accordance with the veterinary drug residue guidelines of United States pharmacopeia, and the withdrawal periods were 4.28, 3.81, 4.84, and 3.51 days, respectively, suggesting that the withdrawal period was 5 d after oral administration of 5 mg/kg twice per day. The optimal dosage of enrofloxacin enteric-coated granules against APP and MS was 5 mg/kg, with over 90% efficacy, which was significantly different (p < 0.05) to the 2.5 mg/kg group, but not to the 10 mg/kg group or the positive control group (tiamulin). In conclusion, 10% enrofloxacin enteric-coated granules had significant potential for treating APP and MS, and it provided an alternative enrofloxacin palatability formulation.
Oncotarget | 2018
Zhixin Lei; Qianying Liu; Bing Yang; Saeed Ahmed; Jiyue Cao; Qigai He
The goal of this study was to establish the epidemiological, pharmacodynamic cut-off values, optimal dose regimens for tildipirosin against Haemophilus parasuis. The minimum inhibitory concentrations (MIC) of 164 HPS isolates were determined and SH0165 whose MIC (2 μg/ml ) were selected for PD analysis. The ex vivo MIC in plasma of SH0165 was 0.25 μg/ml which was 8 times lower than that in TSB. The bacteriostatic, bactericidal and elimination activity (AUC24h/MIC) in serum were 26.35, 52.27 and 73.29 h based on the inhibitory sigmoid Emax modeling. The present study demonstrates that 97.9% of the wild-type (WT) isolates were covered when the epidemiological cut-off value (ECV) was set at 8 μg/ml. The parameters including AUC24h, AUC, T1/2, Cmax, CLb and MRT in PELF were 19.56, 60.41, 2.32, 4.02, 56.6, and 2.63 times than those in plasma, respectively. Regarding the Monte Carlo simulation, the COPD was defined as 0.5 μg/ml in vitro, and the optimal doses to achieve bacteriostatic, bactericidal and elimination effect were 1.85, 3.67 and 5.16 mg/kg for 50% target, respectively, and 2.07, 4.17 and 5.78 mg/kg for 90% target, respectively. The results of this study offer a more optimised alternative for clinical use and demonstrated that 4.17 mg/kg of tildipirosin by intramuscular injection could have an effect on bactericidal activity against HPS. These values are of great significance for the effective treatment of HPS infections, but it also be deserved to be validated in clinical practice in the future research.
Frontiers in Pharmacology | 2018
Zhixin Lei; Qianying Liu; Shuaike Yang; Bing Yang; Haseeb Khaliq; Kun Li; Saeed Ahmed; Abdul Sajid; Bingzhou Zhang; Pin Chen; Yinsheng Qiu; Jiyue Cao; Qigai He
The aims of the present study were to establish optimal doses and provide an alternate COPD for florfenicol against Streptococcus suis based on pharmacokinetic-pharmacodynamic integration modeling. The recommended dose (30 mg/kg b.w.) were administered in healthy pigs through intramuscular and intravenous routes for pharmacokinetic studies. The main pharmacokinetic parameters of Cmax, AUC0-24h, AUC, Ke, t1/2ke, MRT, Tmax, and Clb, were estimated as 4.44 μg/ml, 88.85 μg⋅h/ml, 158.56 μg⋅h/ml, 0.048 h-1, 14.46 h, 26.11 h, 4 h and 0.185 L/h⋅kg, respectively. The bioavailability of florfenicol was calculated to be 99.14% after I.M administration. A total of 124 Streptococcus suis from most cities of China were isolated to determine the minimum inhibitory concentration (MIC) of florfenicol. The MIC50 and MIC90 were calculated as 1 and 2 μg/ml. A serotype 2 Streptococcus suis (WH-2), with MIC value similar to MIC90, was selected as a representative for an in vitro and ex vivo pharmacodynamics study. The MIC values of WH-2 in TSB and plasma were 2 μg/ml, and the MBC/MIC ratios were 2 in TSB and plasma. The MPC was detected to be 3.2 μg/ml. According to inhibitory sigmoid Emax model, plasma AUC0-24h/MIC values of florfenicol versus Streptococcus suis were 37.89, 44.02, and 46.42 h for the bactericidal, bacteriostatic, and elimination activity, respectively. Monte Carlo simulations the optimal doses for bactericidal, bacteriostatic, and elimination effects were calculated as 16.5, 19.17, and 20.14 mg/kg b.w. for 50% target attainment rates (TAR), and 21.55, 25.02, and 26.85 mg/kg b.w. for 90% TAR, respectively. The PK-PD cutoff value (COPD) analyzed from MCS for florfenicol against Streptococcus suis was 1 μg/ml which could provide a sensitivity cutoff value. These results contributed an optimized alternative to clinical veterinary medicine and showed that the dose of 25.02 mg/kg florfenicol for 24 h could have a bactericidal action against Streptococcus suis after I.M administration. However, it should be validated in clinical practice in the future investigations.
Frontiers in chemistry | 2018
Zhixin Lei; Qianying Liu; Qianqian Zhu; Bing Yang; Haseeb Khaliq; Ao Sun; Yi Qi; Gopi Krishna Moku; Yafan Su; Jiawei Wang; Jiyue Cao; Qigai He
Antimicrobial peptide (Piscidin-1) is an effective natural polypeptide, which has great influence and potential on porcine epidemic diarrhea virus (PEDV) and pseudorabies virus (PRV). As an alternative antibiotic substitute, Piscidin-1 was subjected for pharmacokinetics study with three administration routes (i.v, i.m, and p.o) after a single dose of 2 mg/kg in rats and preliminary pharmacodynamics including antiviral activity in cell against PEDV and PRV. Based on 50 percent tissue culture infective dose (TCID50), there were about 2 and 10% virus survived ratios for Piscidin-1 against PRV and PEDV, respectively. The plaque test showed 1 and 2 μg/ml Piscidin-1 could eliminate 95% PRV and 85% PEDV, respectively. The main pharmacokinetics parameters of Cmax, AUC0−∞, Ke, t1/2, Tmax, MRT, and Clb in plasma were not applicable value, 25.9 μg*h/ml, 0.041 h−1, 16.97 h, not available value, 22.77 h, 0.067 L/h*kg after i.v administration, 2.37 μg/ml, 18.95 μg*h/ml, 0.029 h−1, 23.50 h, 0.33 h, 30.12 h, 0.095 L/h*kg after i.m administration and 0.73 μg/ml, 9.63 μg*h/ml, 0.036 h−1, 19.46 h, 0.50 h, 26.76 h, 0.171 L/h*kg after p.o administration. The bioavailability values after i.m and p.o administrations were calculated as 73.17 and 37.18%, respectively. The i.m administration was selected for pharmacokinetics study in ileum content against PEDV. The main pharmacokinetic parameters of Cmax, AUC0−∞, Ke, t1/2, Tmax, MRT, and Clb in ileum content were 1.67 μg/ml, 78.40 μg*h/ml, 0.034 h−1, 20.16 h, 8.12 h, 36.45 h, 0.026 L/h*kg. The Cmax values in plasma (2.37 μg/ml) and ileum content (1.67 μg/ml) were higher than the effective inhibitory concentration determined in the plaque test, and this indicates that Piscidin-1 might have effective inhibition effect against PRV and PEDV after administration of 2 mg/kg i.m. The results of this study represent the first investigations toward the pharmacokinetic characteristics of piscidin-1 in plasma upon three different administration routes, among which i.m. resulted in the highest bioavailability (73.17%). Furthermore, the pharmacokinetics study of ileum content indicated Piscidin-1 might have good effect against PEDV and could be regarded as an alternative antibiotic in clinical veterinary in the future study.
Frontiers in Pharmacology | 2018
Zhixin Lei; Qianying Liu; Bing Yang; Haseeb Khaliq; Saeed Ahmed; Bowen Fan; Jiyue Cao; Qigai He
The current study evaluates a tested marbofloxacin tablet (MBT) (Petsen), in terms of bioavailability and pharmacokinetics (PK) in a comparison of the commercialized and standard tablet (Marbocyl) in beagle dogs. Four different bacterial species were selected for the determination of the minimal inhibitory concentration (MIC) against marbofloxacin (MBF). Target animal safety studies were conducted with a wide spectrum of dosages of Petsen. Pharmacokinetics and bioavailability of Petsen were observed after the oral administration of a recommended dosage of 2 mg/kg. The MIC90 of MBF against Staphylococcus aureus, Escherichia coli, Pasteurella multocida, and Streptococcus were 2.00, 4.00, 0.25, and 0.50 μg/ml, respectively. These results showed that the MBT has an expected antimicrobial activity in vitro. The main parameters of t1/2β, Clb, AUC0−∞, Cmax, and Ke were 22.14 h, 0.15 L/h, 13.27 μg.h/ml, 0.95 μg/ml, 0.09 h−1, and 16.47 h, 0.14 L/h, 14.10 μg.h/ml, 0.97 μg/ml, 0.11 h−1 after the orally administrated Petsen and Marbocyl, while no biologically significant changes and toxicological significance have been found by their comparison. These findings indicate that the Petsen had a slow elimination, high bioavailability and kinetically similar to the commercialized Marbocyl. Furthermore, no statistically significant differences were distinguished on the continuous gradient dosages of 2, 6, and 10 mg/kg in the term of the clinical presentation. The present study results displayed that the tested MBT (Petsen) was safe, with limited toxicity, which was similar to the commercialized tablet (Marbocyl), could provide an alternative MBT as a veterinary medicine in beagle dogs.
Frontiers in Pharmacology | 2017
Zhixin Lei; Qianying Liu; Bing Yang; Haseeb Khaliq; Jiyue Cao; Qigai He
Marbofloxacin is a fluoroquinolone antibiotic and highly effective treatment for respiratory diseases. Here we aimed to evaluate the ex vivo activity of marbofloxacin against Streptococcus suis in pig serum, as well as the optimal dosages scheme for avoiding the fluoroquinolone resistance development. A single dose of 8 mg/kg body weight (bw) was administrated orally to healthy pigs and serum samples were collected during the next 72 h. Serum marbofloxacin content was determined by high-performance liquid chromatography. We estimated the Cmax (6.28 μg/ml), AUC0-24 h (60.30 μg.h/ml), AUC0-∞ (88.94 μg.h/ml), T1/2ke, (12.48 h), Tmax (0.75 h) and Clb (0.104 L/h) of marbofloxacin in pigs, as well as the bioavailability of marbofloxacin (94.21%) after a single 8 mg/kg oral administration. We also determined the pharmacodynamic of marbofloxacin against 134 Streptococcus suis strains isolated from Chinese cities in TSB and serum. These isolated strains had a MIC90 of 1 μg/ml. HB2, a virulent, serotype 2 isolate of SS, was selected for having antibacterial activity in TSB and serum to marbofloxacin. We determined the minimum inhibitory concentration (MIC, 1 μg/ml in TSB, 2 μg/ml in serum), minimum bactericidal concentration (MBC, 4 μg/ml in TSB, 4 μg/ml in serum), and mutant prevention concentration (2.56 μg/ml in TSB) for marbofloxacin against Streptococcus suis (HB2). In serum, by inhibitory sigmoid Emax modeling, the AUC0-24h/MIC values for marbofloxacin against HB2 were 25.23 (bacteriostatic), 35.64 (bactericidal), and 39.71 (elimination) h. Based on Monte Carlo simulations, the predicted optimal oral doses of marbofloxacin curing Streptococcus suis were 5.88 (bacteriostatic), 8.34 (bactericidal), and 9.36 (elimination) mg/kg.bw for a 50% target attainment ratio, and 8.16 (bacteriostatic), 11.31 (bactericidal), and 12.35 (elimination) mg/kg.bw for a 90% target attainment ratio. The data presented here provides optimized dosage information for clinical use; however, these predicted dosages should also be validated in clinical practice.
Frontiers in Pharmacology | 2018
Zhixin Lei; Qianying Liu; Yi Qi; Bing Yang; Haseeb Khaliq; Gopi Krishna Moku; Saeed Ahmed; Kun Li; Hui Zhang; Wenqiu Zhang; Jiyue Cao; Qigai He
Pasteurella multocida (PM) can invade the upper respiratory tract of the body and cause death and high morbidity. Tildipirosin, a new 16-membered-ring macrolide antimicrobial, has been recommended for the treatment of respiratory diseases. The objective of this research was to improve the dose regimes of tildipirosin to PM for reducing the macrolides resistance development with the pharmacokinetic/pharmacodynamic (PK/PD) modeling approach and to establish an alternate cutoff for tildipirosin against PM. A single dose (4 mg/kg body weight) of tildipirosin was administered via intramuscular (i.m.) and intravenous (i.v.) injection to the pigs. The minimum inhibitory concentration (MIC) values of clinical isolates (112) were measured in the range of 0.0625–32 μg/ml, and the MIC50 and MIC90 values were 0.5 and 2 μg/ml, respectively. The MIC of the selected PM04 was 2 and 0.5 μg/ml in the tryptic soy broth (TSB) and serum, respectively. The main pharmacokinetic (PK) parameters including the area under the curve at 24 h (AUC24 h), AUC, terminal half-life (T1/2), the time to peak concentration (Tmax), peak concentration (Cmax), relative total systemic clearance (CLb), and the last mean residence time (MRTlast) were calculated to be 7.10, 7.94 μg∗h/ml, 24.02, NA h, NA μg/ml, 0.46 L/h∗kg, 8.06 h and 3.94, 6.79 μg∗h/ml, 44.04, 0.25 h, 0.98 μg/ml, 0.43 L/h∗kg, 22.85 h after i.v. and i.m. induction, respectively. Moreover, the bioavailability of i.m. route was 85.5%, and the unbinding of tildipirosin to serum protein was 78%. The parameters AUC24 h/MIC in serum for bacteriostatic, bactericidal, and elimination activities were calculated as 18.91, 29.13, and 34.03 h based on the inhibitory sigmoid Emax modeling. According to the Monte Carlo simulation, the optimum doses for bacteriostatic, bactericidal, and elimination activities were 6.10, 9.41, and 10.96 mg/kg for 50% target and 7.86, 12.17, and 14.57 mg/kg for 90% target, respectively. The epidemiological cutoff value (ECV) was calculated to be 4 μg/ml which could cover 95% wild-type clinical isolates distribution. The PK-PD cutoff (COPD) was analyzed to be 0.25 μg/ml in vitro for tildipirosin against PM based on the Monte Carlo simulation. Compared with these two cutoff values, the finial susceptible breakpoint was defined as 4 μg/ml. The data presented now provides the optimal regimens (12.17 mg/kg) and susceptible breakpoint (4 μg/ml) for clinical use, but these predicted data should be validated in the clinical practice.