Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhixin Lei is active.

Publication


Featured researches published by Zhixin Lei.


Scientific Reports | 2017

Toxic metabolites, MAPK and Nrf2/Keap1 signaling pathways involved in oxidative toxicity in mice liver after chronic exposure to Mequindox

Qianying Liu; Zhixin Lei; Anxiong Huang; Qinghua Wu; Shuyu Xie; Ihsan Awais; Menghong Dai; Xu Wang; Zonghui Yuan

Mequindox (MEQ) is a synthetic antimicrobial agent of quinoxaline-1,4-dioxide group (QdNOs). The liver is regarded as the toxicity target of QdNOs, and the role of N → O group-associated various toxicities mediated by QdNOs is well recognized. However, the mechanism underlying the in vivo effects of MEQ on the liver, and whether the metabolic pathway of MEQ is altered in response to the pathophysiological conditions still remain unclear. We now provide evidence that MEQ triggers oxidative damage in the liver. Moreover, using LC/MS-ITTOF analysis, two metabolites of MEQ were detected in the liver, which directly confirms the potential connection between N → O group reduction metabolism of MEQ and liver toxicity. The gender difference in MEQ-induced oxidative stress might be due to adrenal toxicity and the generation of M4 (2-isoethanol 1-desoxymequindox). Furthermore, up-regulation of the MAPK and Nrf2-Keap1 family and phase II detoxifying enzymes (HO-1, GCLC and NQO1) were also observed. The present study demonstrated for the first time the protein peroxidation and a proposal metabolic pathway after chronic exposure of MEQ, and illustrated that the MAPK, Nrf2-Keap1 and NF-кB signaling pathways, as well as the altered metabolism of MEQ, were involved in oxidative toxicity mediated by MEQ in vivo.


Frontiers in Pharmacology | 2017

Pharmacokinetic and Pharmacodynamic Evaluation of Marbofloxacin and PK/PD Modeling against Escherichia coli in Pigs

Zhixin Lei; Qianying Liu; Bing Yang; Shuaike Yang; Qianqian Zhu; Kun Li; Shishuo Zhang; Jiyue Cao; Qigai He

The aim of this study was to evaluate the activity of marbofloxacin and establish the optimal dose regimens for decreasing the development of fluoroquinolone resistance in pigs against Escherichia coli with ex vivo pharmacokinetic/pharmacodynamic (PK/PD) modeling. The recommended dose (2 mg/kg body weight) of marbofloxacin was orally administered in healthy pigs. The ileum content and plasma were both collected for the determination of marbofloxacin. The main parameters of Cmax, AUC0-24 h, AUC, Ke, t1/2ke, MRT and Clb were 11.28 μg/g, 46.15, 77.81 μg⋅h/g, 0.001 h-1, 69.97 h, 52.45 h, 0.026 kg/h in ileum content, and 0.55 μg/ml, 8.15, 14.67 μg⋅h/ml, 0.023 h-1, 30.67 h, 34.83 h, 0.14 L/h in plasma, respectively In total, 218 E. coli strains were isolated from most cities of China. The antibacterial activity in vitro and ex vivo of marbofloxacin against E. coli was determined following CLSI guidance. The MIC90 of sensitive strains (142) was calculated as 2 μg/ml. The minimum inhibitory concentration (MIC) of HB197 was 2 and 4 μg/ml in broth and ileum fluids, respectively. In vitro mutant prevention concentration, growth and killing-time in vitro and ex vivo of marbofloxacin against selected HB197 were assayed for pharmacodynamic studies. According to the inhibitory sigmoid Emax modeling, the value of AUC0-24 h/MIC produced in ileum content was achieved, and bacteriostatic, bactericidal activity, and elimination were calculated as 16.26, 23.54, and 27.18 h, respectively. Based on Monte Carlo simulations to obtain 90% target attainment rate, the optimal doses to achieve bacteriostatic, bactericidal, and elimination effects were 0.85, 1.22, and 1.41 mg/kg.bw for 50% target, respectively, and 0.92, 1.33, and 1.53 mg/kg.bw for 90% target, respectively, after oral administration. The results in this study provided a more optimized alternative for clinical use and demonstrated that the dosage 2 mg/kg of marbofloxacin by oral administration could have an effect on bactericidal activity against E. coli.


Scientific Reports | 2017

Comparative transcriptional profiling of tildipirosin-resistant and sensitive Haemophilus parasuis

Zhixin Lei; Shulin Fu; Bing Yang; Qianying Liu; Saeed Ahmed; Lei Xu; Jiyue Cao; Yinsheng Qiu

Numerous studies have been conducted to examine the molecular mechanism of Haemophilus parasuis resistance to antibiotic, but rarely to tildipirosin. In the current study, transcriptional profiling was applied to analyse the variation in gene expression of JS0135 and tildipirosin-resistant JS32. The growth curves showed that JS32 had a higher growth rate but fewer bacteria than JS0135. The cell membranes of JS32 and a resistant clinical isolate (HB32) were observed to be smoother than those of JS0135. From the comparative gene expression profile 349 up- and 113 downregulated genes were observed, covering 37 GO and 63 KEGG pathways which are involved in biological processes (11), cellular components (17), molecular function (9), cellular processes (1), environmental information processing (4), genetic information processing (9) and metabolism (49) affected in JS32. In addition, the relative overexpression of genes of the metabolism pathway (HAPS_RS09315, HAPS_RS09320), ribosomes (HAPS_RS07815) and ABC transporters (HAPS_RS10945) was detected, particularly the metabolism pathway, and verified with RT-qPCR. Collectively, the gene expression profile in connection with tildipirosin resistance factors revealed unique and highly resistant determinants of H. parasuis to macrolides that warrant further attention due to the significant threat of bacterial resistance.


Frontiers in Veterinary Science | 2017

Evaluation of Bioequivalence of Two Long-Acting 20% Oxytetracycline Formulations in Pigs

Zhixin Lei; Qianying Liu; Bing Yang; Saeed Ahmed; Tingting Song; Pin Chen; Jiyue Cao; Qigai He

The aim of this study was to explore the bioequivalence of long-acting oxytetracycline in two formulations, a reference formulation (Terramycin 20% LA, Pfizer) and a test one (Kangtekang 20% LA, Huishen). Both formulations were administered intramuscularly at 20 mg/kg body weight at each of 24 healthy animals during a two-period crossover parallel experimental design. The oxytetracycline (OTC) concentrations in plasma were measured by high-performance liquid chromatography, and the limit of quantification was 0.05 µg/ml with a recovery ratio of above 90%. Moreover, the descriptive pharmacokinetics parameters (Cmax, AUC0–144h, and AUC0–∞) were calculated and compared under analysis of variance, and 90% confidence interval (CI) were compared, except for Tmax analyzed by non-parametric tests based on Wilcoxons’s signed rank test. The comparison results of Cmax, AUC0–144h, AUC0–∞, and Tmax were 5.066 ± 0.486, 5.071 ± 0.877 µg/ml, 118.926 ± 13.259, 126.179 ± 17.390 µg h/ml, 123.087 ± 13.906, 130.732 ± 18.562 µg h/ml, 0.740 ± 0.278, 0.650 ± 0.258 h, respectively, and did not reveal any significant differences. In addition, 90% CIs of these ratios for reference and test product were within an interval of 80–125%, and the relative bioavailability of test one was (94.291 ± 15.287)%. Therefore, it has been concluded that test OTC was bioequivalent to the reference formulation in pigs.


Regulatory Toxicology and Pharmacology | 2017

A two-year dietary carcinogenicity study of cyadox in Sprague-Dawley rats

Qianying Liu; Zhixin Lei; Luqing Cui; Jianwu Zhang; Ihsan Awais; Menghong Dai; Xu Wang; Zonghui Yuan

ABSTRACT To investigate the potential carcinogenicity of cyadox, an antimicrobial agent, four groups of Sprague‐Dawley rats (50 rats/sex/group) were fed diets containing cyadox (0, 200, 600 or 2000 mg/kg) for up to two years. There were significant decreases in body weight, feed intake and feed efficiency in both genders during most of the period in the 2000 mg/kg group. Significant decreases in serum ALT were observed in the 2000 mg/kg group at weeks 52, 78 and 104. For the control, 200, 600, and 2000 mg/kg groups, the tumor incidence in females was 33.3%, 37.2%, 40.0% and 19.0%, while it in males it was 18.9%, 2.6%, 17.1% and 13.6%, respectively. At histopathology, no increases in tumor incidence were attributed to treatment with cyadox. The mild swelling and fatty degeneration in hepatocytes, and mild swelling and tubular necrosis in the kidney were observed in 2000 mg/kg group. The no‐observed‐effect‐level (NOEL) for carcinogenicity of cyadox fed to rats was 2000 mg/kg diet (132.18–156.28 mg/kg b.w./day). In conclusion, cyadox was not carcinogenic to rats with the liver and kidney as the target organs, and the side chain may be involved in toxicity and carcinogenicity mediated by QdNOs. HIGHLIGHTSHigh dose of cyadox decreased body weight, feed intake and feed efficiency.High dose of cyadox changed the levels of serum ALT, K+, Na+ and Cl− at week 104.2000 mg/kg cyadox induced pathological changes in kidneys and liver.Cyadox did not induce carcinogenicity.The NOEL for carcinogenicity of cyadox was 2000 mg/kg diet to rats.


Oncotarget | 2017

Toxic metabolites, Sertoli cells and Y chromosome related genes are potentially linked to the reproductive toxicity induced by mequindox

Qianying Liu; Zhixin Lei; Menghong Dai; Xu Wang; Zonghui Yuan

Mequindox (MEQ) is a relatively new synthetic antibacterial agent widely applied in China since the 1980s. However, its reproductive toxicity has not been adequately performed. In the present study, four groups of male Kunming mice (10 mice/group) were fed diets containing MEQ (0, 25, 55 and 110 mg/kg in the diet) for up to 18 months. The results show that M4 could pass through the blood-testis barrier (BTB), and demonstrate that Sertoli cells (SCs) are the main toxic target for MEQ to induce spermatogenesis deficiency. Furthermore, adrenal toxicity, adverse effects on the hypothalamic-pituitary-testicular axis (HPTA) and Leydig cells, as well as the expression of genes related to steroid biosynthesis and cholesterol transport, were responsible for the alterations in sex hormones in the serum of male mice after exposure to MEQ. Additionally, the changed levels of Y chromosome microdeletion related genes, such as DDX3Y, HSF2, Sly and Ssty2 in the testis might be a mechanism for the inhibition of spermatogenesis induced by MEQ. The present study illustrates for the first time the toxic metabolites of MEQ in testis of mice, and suggests that SCs, sex hormones and Y chromosome microdeletion genes are involved in reproductive toxicity mediated by MEQ in vivo.


Frontiers in Pharmacology | 2017

Mechanisms of the Testis Toxicity Induced by Chronic Exposure to Mequindox

Qianying Liu; Zhixin Lei; Anxiong Huang; Qirong Lu; Xu Wang; Saeed Ahmed; Ihsan Awais; Zonghui Yuan

Mequindox (MEQ) is a synthetic antimicrobial agent widely used in China since the 1980s. Although the toxicity of MEQ is well recognized, its testis toxicity has not been adequately investigated. In the present study, we provide evidence that MEQ triggers oxidative stress, mitochondrion dysfunction and spermatogenesis deficiency in mice after exposure to MEQ (0, 25, 55, and 110 mg/kg in the diet) for up to 18 months. The genotoxicity and adrenal toxicity may contribute to sperm abnormalities caused by MEQ. Moreover, using LC/MS-IT-TOF analysis, two metabolites, 3-methyl-2-(1-hydroxyethyl) quinoxaline-N4-monoxide (M4) and 3-methyl-2-(1-hydroxyethyl) quinoxaline-N1-monoxide (M8), were detected in the serum of mice, which directly confirms the relationship between the N→O group reduction metabolism of MEQ and oxidative stress. Interestingly, only M4 was detected in the testes, suggesting that the higher reproductive toxicity of M4 than M8 might be due to the increased stability of M4-radical (M4-R) compared to M8-radical (M8-R). Furthermore, the expression of the blood-testis barrier (BTB)-associated junctions such as tight junctions, gap junctions and basal ectoplasmic specializations were also examined. The present study demonstrated for the first time the role of the M4 in testis toxicity, and illustrated that the oxidative stress, mitochondrion dysfunction and interference in spermatogenesis, as well as the altered expression of BTB related junctions, were involved in the reproductive toxicity mediated by MEQ in vivo.


Frontiers in Pharmacology | 2017

Clinical Efficacy and Residue Depletion of 10% Enrofloxacin Enteric-Coated Granules in Pigs

Zhixin Lei; Qianying Liu; Bing Yang; Kun Li; Saeed Ahmed; Liping Hong; Pin Chen; Qigai He; Jiyue Cao

A new, more palatable formulation of 10% enrofloxacin enteric-coated granules was investigated to evaluate the pharmacokinetic effect in plasma, the residue elimination in tissues and the clinical efficacy against Actinobacillus pleuropneumonia (APP) and Mycoplasam suis (MS) in pigs. In this study, the enrofloxacin concentrations in plasma and tissues were detected using high-performance liquid chromatography with phosphate buffer (pH = 3) and acetonitrile. The pharmacokinetics and elimination of enrofloxacin enteric-coated granules were performed after oral administration at a single dose of 10 mg/kg body weight (bw) and 5 mg/kg twice per day for 5 consecutive days, respectively. The in vivo antibacterial efficacy and clinical effectiveness of enrofloxacin enteric-coated granules against APP and MS were assayed at 2.5, 5, 10 mg/kg, compared with tiamulin (8 mg/kg) based on establishment of APP and MS infection models. 56 APP strains were selected and tested for in vitro antibacterial activity of enrofloxacin enteric-coated granules. The main parameters of elimination half-life (t1/2β), Tmax, and area under the curve (AUC) were 14.99 ± 4.19, 3.99 ± 0.10, and 38.93 ± 1.52 μg h/ml, respectively, revealing that the enrofloxacin concentration remained high and with a sustainable distribution in plasma. Moreover, the analysis on the evaluation of enrofloxacin and ciprofloxacin in muscle, fat, liver and kidney showed that the recovery were more than 84% recovery in accordance with the veterinary drug residue guidelines of United States pharmacopeia, and the withdrawal periods were 4.28, 3.81, 4.84, and 3.51 days, respectively, suggesting that the withdrawal period was 5 d after oral administration of 5 mg/kg twice per day. The optimal dosage of enrofloxacin enteric-coated granules against APP and MS was 5 mg/kg, with over 90% efficacy, which was significantly different (p < 0.05) to the 2.5 mg/kg group, but not to the 10 mg/kg group or the positive control group (tiamulin). In conclusion, 10% enrofloxacin enteric-coated granules had significant potential for treating APP and MS, and it provided an alternative enrofloxacin palatability formulation.


Oncotarget | 2018

The pharmacokinetic-pharmacodynamic modeling and cut-off values of tildipirosin against Haemophilus parasuis

Zhixin Lei; Qianying Liu; Bing Yang; Saeed Ahmed; Jiyue Cao; Qigai He

The goal of this study was to establish the epidemiological, pharmacodynamic cut-off values, optimal dose regimens for tildipirosin against Haemophilus parasuis. The minimum inhibitory concentrations (MIC) of 164 HPS isolates were determined and SH0165 whose MIC (2 μg/ml ) were selected for PD analysis. The ex vivo MIC in plasma of SH0165 was 0.25 μg/ml which was 8 times lower than that in TSB. The bacteriostatic, bactericidal and elimination activity (AUC24h/MIC) in serum were 26.35, 52.27 and 73.29 h based on the inhibitory sigmoid Emax modeling. The present study demonstrates that 97.9% of the wild-type (WT) isolates were covered when the epidemiological cut-off value (ECV) was set at 8 μg/ml. The parameters including AUC24h, AUC, T1/2, Cmax, CLb and MRT in PELF were 19.56, 60.41, 2.32, 4.02, 56.6, and 2.63 times than those in plasma, respectively. Regarding the Monte Carlo simulation, the COPD was defined as 0.5 μg/ml in vitro, and the optimal doses to achieve bacteriostatic, bactericidal and elimination effect were 1.85, 3.67 and 5.16 mg/kg for 50% target, respectively, and 2.07, 4.17 and 5.78 mg/kg for 90% target, respectively. The results of this study offer a more optimised alternative for clinical use and demonstrated that 4.17 mg/kg of tildipirosin by intramuscular injection could have an effect on bactericidal activity against HPS. These values are of great significance for the effective treatment of HPS infections, but it also be deserved to be validated in clinical practice in the future research.


Frontiers in Pharmacology | 2018

PK-PD Integration Modeling and Cutoff Value of Florfenicol against Streptococcus suis in Pigs

Zhixin Lei; Qianying Liu; Shuaike Yang; Bing Yang; Haseeb Khaliq; Kun Li; Saeed Ahmed; Abdul Sajid; Bingzhou Zhang; Pin Chen; Yinsheng Qiu; Jiyue Cao; Qigai He

The aims of the present study were to establish optimal doses and provide an alternate COPD for florfenicol against Streptococcus suis based on pharmacokinetic-pharmacodynamic integration modeling. The recommended dose (30 mg/kg b.w.) were administered in healthy pigs through intramuscular and intravenous routes for pharmacokinetic studies. The main pharmacokinetic parameters of Cmax, AUC0-24h, AUC, Ke, t1/2ke, MRT, Tmax, and Clb, were estimated as 4.44 μg/ml, 88.85 μg⋅h/ml, 158.56 μg⋅h/ml, 0.048 h-1, 14.46 h, 26.11 h, 4 h and 0.185 L/h⋅kg, respectively. The bioavailability of florfenicol was calculated to be 99.14% after I.M administration. A total of 124 Streptococcus suis from most cities of China were isolated to determine the minimum inhibitory concentration (MIC) of florfenicol. The MIC50 and MIC90 were calculated as 1 and 2 μg/ml. A serotype 2 Streptococcus suis (WH-2), with MIC value similar to MIC90, was selected as a representative for an in vitro and ex vivo pharmacodynamics study. The MIC values of WH-2 in TSB and plasma were 2 μg/ml, and the MBC/MIC ratios were 2 in TSB and plasma. The MPC was detected to be 3.2 μg/ml. According to inhibitory sigmoid Emax model, plasma AUC0-24h/MIC values of florfenicol versus Streptococcus suis were 37.89, 44.02, and 46.42 h for the bactericidal, bacteriostatic, and elimination activity, respectively. Monte Carlo simulations the optimal doses for bactericidal, bacteriostatic, and elimination effects were calculated as 16.5, 19.17, and 20.14 mg/kg b.w. for 50% target attainment rates (TAR), and 21.55, 25.02, and 26.85 mg/kg b.w. for 90% TAR, respectively. The PK-PD cutoff value (COPD) analyzed from MCS for florfenicol against Streptococcus suis was 1 μg/ml which could provide a sensitivity cutoff value. These results contributed an optimized alternative to clinical veterinary medicine and showed that the dose of 25.02 mg/kg florfenicol for 24 h could have a bactericidal action against Streptococcus suis after I.M administration. However, it should be validated in clinical practice in the future investigations.

Collaboration


Dive into the Zhixin Lei's collaboration.

Top Co-Authors

Avatar

Qianying Liu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jiyue Cao

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bing Yang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Saeed Ahmed

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qigai He

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xu Wang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zonghui Yuan

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haseeb Khaliq

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Menghong Dai

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ihsan Awais

COMSATS Institute of Information Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge