Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joana Liberal is active.

Publication


Featured researches published by Joana Liberal.


Journal of Ethnopharmacology | 2013

Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-κB and MAPK activation in macrophages

Michelle Cristiane Búfalo; Isabel C.F.R. Ferreira; Gustavo Costa; Vera Francisco; Joana Liberal; Maria Teresa Cruz; Maria Celeste Lopes; Maria Teresa Batista; José Maurício Sforcin

ETHNOPHARMACOLOGICAL RELEVANCE Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. MATERIALS AND METHODS The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. RESULTS Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential. CONCLUSIONS Propolis exerted an antioxidant and anti-inflammatory action and caffeic acid may be involved in its inhibitory effects on NO production and intracellular signaling cascades, suggesting its use as a natural source of safe anti-inflammatory drugs.


Diabetes | 2010

Calcium dobesilate inhibits the alterations in tight junction proteins and leukocyte adhesion to retinal endothelial cells induced by diabetes

Ermelindo C. Leal; João Martins; Paula Voabil; Joana Liberal; Carlo Chiavaroli; Jacques Bauer; José Cunha-Vaz; António F. Ambrósio

OBJECTIVE Calcium dobesilate (CaD) has been used in the treatment of diabetic retinopathy in the last decades, but its mechanisms of action are not elucidated. CaD is able to correct the excessive vascular permeability in the retina of diabetic patients and in experimental diabetes. We investigated the molecular and cellular mechanisms underlying the protective effects of CaD against the increase in blood–retinal barrier (BRB) permeability induced by diabetes. RESEARCH DESIGN AND METHODS Wistar rats were divided into three groups: controls, streptozotocin-induced diabetic rats, and diabetic rats treated with CaD. The BRB breakdown was evaluated using Evans blue. The content or distribution of tight junction proteins (occludin, claudin-5, and zonula occluden-1 [ZO-1]), intercellular adhesion molecule-1 (ICAM-1), and p38 mitogen-activated protein kinase (p38 MAPK) was evaluated by Western blotting and immunohistochemistry. Leukocyte adhesion was evaluated in retinal vessels and in vitro. Oxidative stress was evaluated by the detection of oxidized carbonyls and tyrosine nitration. NF-κB activation was measured by enzyme-linked immunosorbent assay. RESULTS Diabetes increased the BRB permeability and retinal thickness. Diabetes also decreased occludin and claudin-5 levels and altered the distribution of ZO-1 and occludin in retinal vessels. These changes were inhibited by CaD treatment. CaD also inhibited the increase in leukocyte adhesion to retinal vessels or endothelial cells and in ICAM-1 levels, induced by diabetes or elevated glucose. Moreover, CaD decreased oxidative stress and p38 MAPK and NF-κB activation caused by diabetes. CONCLUSIONS CaD prevents the BRB breakdown induced by diabetes, by restoring tight junction protein levels and organization and decreasing leukocyte adhesion to retinal vessels. The protective effects of CaD are likely to involve the inhibition of p38 MAPK and NF-κB activation, possibly through the inhibition of oxidative/nitrosative stress.


DNA and Cell Biology | 2015

Autophagy and Inflammasome Interplay

João Demétrio Martins; Joana Liberal; Ana Maria Silva; Isabel C.F.R. Ferreira; Bruno Miguel Neves; Maria Teresa Cruz

Inflammation is a defensive response of the organism to manage harmful stimuli sensed by innate immune cells. The signal alarm is triggered by the recognition of pathogen-associated molecular patterns, such as microbial components, or host-derived damage-associated molecular patterns (DAMPs), namely high-mobility group box 1 protein (HMGB1) and purine metabolites, through a set of highly conserved receptors in immune cells termed pattern recognition receptors. Among these receptors, membrane-associated toll-like receptors (TLRs) and cytosolic nucleotide binding and oligomerization domain (nod)-like receptors (NLRs) assume particular relevance in the inflammatory process. Once activated, NLRs induce the assembly of multiprotein complexes called inflammasomes, leading to production of proinflammatory cytokines (e.g., interleukin-1) and induction of inflammatory cell death (pyroptosis) through the activation of caspase-1. Although these processes intend to protect the body from insults, prolonged or exacerbated inflammatory responses associated with inflammasome activation are related to a growing number of diseases. Recently, inflammasome activation and autophagy were shown to be linked and to mutually influence each other. Therefore, we aim, in this review, to discuss the recent evidences concerning the cross talk between autophagy and inflammasome activation and its potential roles in disease progression.


Neuroscience | 2010

Long-term exposure to high glucose induces changes in the content and distribution of some exocytotic proteins in cultured hippocampal neurons

Joana M. Gaspar; Á. Castilho; F.I. Baptista; Joana Liberal; António F. Ambrósio

A few studies have reported the existence of depletion of synaptic vesicles, and changes in neurotransmitter release and in the content of exocytotic proteins in the hippocampus of diabetic rats. Recently, we found that diabetes alters the levels of synaptic proteins in hippocampal nerve terminals. Hyperglycemia is considered the main trigger of diabetic complications, although other factors, such as low insulin levels, also contribute to diabetes-induced changes. Thus, the aim of this work was to evaluate whether long-term elevated glucose per se, which mimics prolonged hyperglycemia, induces significant changes in the content and localization of synaptic proteins involved in exocytosis in hippocampal neurons. Hippocampal cell cultures were cultured for 14 days and were exposed to high glucose (50 mM) or mannitol (osmotic control; 25 mM plus 25 mM glucose), for 7 days. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. The protein levels of vesicle-associated membrane protein-2 (VAMP-2), synaptosomal-associated protein-25 (SNAP-25), syntaxin-1, synapsin-1, synaptophysin, synaptotagmin-1, rabphilin 3a, and also of vesicular glutamate and GABA transporters (VGluT-1 and VGAT), were evaluated by immunoblotting, and its localization was analyzed by immunocytochemistry. The majority of the proteins were not affected. However, elevated glucose decreased the content of SNAP-25 and increased the content of synaptotagmin-1 and VGluT-1. Moreover, there was an accumulation of syntaxin-1, synaptotagmin-1 and VGluT-1 in the cell body of some hippocampal neurons exposed to high glucose. No changes were detected in mannitol-treated cells. In conclusion, elevated glucose per se did not induce significant changes in the content of the majority of the synaptic proteins studied in hippocampal cultures, with the exception of SNAP-25, synaptotagmin-1 and VGluT-1. However, there was an accumulation of some proteins in cell bodies of hippocampal neurons exposed to elevated glucose, suggesting that the trafficking of these proteins to the synapse may be compromised. Moreover, these results also suggest that other factors, in addition to hyperglycemia, certainly contribute to alterations detected in synaptic proteins in diabetic animals.


Neuroscience | 2012

Elevated glucose concentration changes the content and cellular localization of AMPA receptors in the retina but not in the hippocampus

Áurea F. Castilho; Joana Liberal; Filipa I. Baptista; Joana M. Gaspar; Ana Luísa Carvalho; António F. Ambrósio

Diabetic retinopathy and diabetic encephalopathy are two common complications of diabetes mellitus. The impairment of glutamatergic neurotransmission in the retina and hippocampus has been suggested to be involved in the pathogenesis of these diabetic complications. In this study, we investigated the effect of elevated glucose concentration and diabetes on the protein content and surface expression of AMPA receptor subunits in the rat retina and hippocampus. We have used two models, cultured retinal and hippocampal cells exposed to elevated glucose concentration and an animal model of streptozotocin-induced type 1 diabetes. The immunoreactivity of GluA1, GluA2 and GluA4 was evaluated by Western blot and immunocytochemistry. The levels of these subunits at the plasma membrane were evaluated by biotinylation and purification of plasma membrane-associated proteins. Elevated glucose concentration increased the total levels of GluA2 subunit of AMPA receptors in retinal neural cells, but not of the subunits GluA1 or GluA4. However, at the plasma membrane, elevated glucose concentration induced an increase of all AMPA receptor subunits. In cultured hippocampal neurons, elevated glucose concentration did not induce significant alterations in the levels of AMPA receptor subunits. In the retinas of diabetic rats there were no persistent changes in the levels of AMPA receptor subunits comparing to aged-matched control retinas. Also, no consistent changes were detected in the levels of GluA1, GluA2 or GluA4 in the hippocampus of diabetic rats. We demonstrate that elevated glucose concentration induces early changes in AMPA receptor subunits, mainly in GluA2 subunit, in retinal neural cells. Conversely, hippocampal neurons seem to remain unaffected by elevated glucose concentration, concerning the expression of AMPA receptors, suggesting that AMPA receptors are more susceptible to the stress caused by elevated glucose concentration in retinal cells than in hippocampal neurons.


Neuroscience Letters | 2015

Long-term exposure to high glucose increases the content of several exocytotic proteins and of vesicular GABA transporter in cultured retinal neural cells

Filipa I. Baptista; Áurea F. Castilho; Joana M. Gaspar; Joana Liberal; Célia A. Aveleira; António F. Ambrósio

Diabetic retinopathy is a leading cause of vision loss and blindness. Increasing evidence has shown that the neuronal components of the retina are affected even before the detection of vascular lesions. Hyperglycemia is considered the main pathogenic factor for the development of diabetic complications. Nevertheless, other factors like neuroinflammation, might also contribute for neural changes. To clarify whether hyperglycemia can be the main trigger of synaptic changes, we evaluated whether prolonged elevated glucose per se, mimicking chronic hyperglycemia, is able to change the content and distribution of several exocytotic proteins and vesicular glutamate and GABA transporters in retinal neurons. Moreover, we also tested the hypothesis that an inflammatory stimulus (interleukin-1β) could exacerbate the effects induced by exposure to elevated glucose, contributing for changes in synaptic proteins in retinal neurons. Rat retinal neural cells were cultured for 9 days. Cells were exposed to elevated D-glucose (30 mM) or D-mannitol (osmotic control), for 7 days, or were exposed to interleukin-1β (10 ng/ml) or LPS (1 μg/ml) for 24 h. The protein content and distribution of SNARE proteins (SNAP-25, syntaxin-1, VAMP-2), synapsin-1, synaptotagmin-1, rabphilin 3a, VGluT-1 and VGAT, were evaluated by western blotting and immunocytochemistry. The protein content and immunoreactivity of syntaxin-1, synapsin-1, rabphilin 3a and VGAT increased in retinal neural cells exposed to high glucose. No changes were detected when cells were exposed to interleukin-1β, LPS or mannitol per se. Particularly, exposure to interleukin-1β for 24 h did not exacerbate the effect of high glucose on the content and immunoreactivity of exocytotic proteins, suggesting the primordial role of hyperglycemia for neuronal changes. In summary, prolonged exposure to elevated glucose alters the total content of several proteins involved in exocytosis, suggesting that hyperglycemia per se is a fundamental factor for neuronal changes caused by diabetes.


Journal of Ethnopharmacology | 2014

Bioactivity of Fragaria vesca leaves through inflammation, proteasome and autophagy modulation.

Joana Liberal; Vera Francisco; Gustavo Costa; Artur Figueirinha; Maria Teresa Amaral; Carla Marques; Henrique Girão; Maria Celeste Lopes; Maria Teresa Cruz; Maria Teresa Batista

ETHNOPHARMACOLOGICAL RELEVANCE Fragaria vesca leaves have been used in folk medicine for the treatment of several diseases, namely gastrointestinal, cardiovascular and urinary disorders, which could be related with the potential anti-inflammatory properties of the extract. This work aims to disclose the bioactivity and the underlying action mechanism of an extract from Fragaria vesca leaves in order to support its traditional uses. MATERIALS AND METHODS A hydroalcoholic extract was prepared from Fragaria vesca leaves and its anti-inflammatory potential was evaluated through inhibition of nitric oxide production and expression of several pro-inflammatory proteins in lipopolysaccharide-triggered macrophages. Nitric oxide scavenger activity was also assessed using a standard nitric oxide donor. Since numerous inflammatory proteins are tightly regulated by ubiquitination and proteasomal degradation, the putative effect of the extract on these cellular proteolytic pathways was also disclosed. The phytochemical characterization was performed by HPLC-PDA-ESI/MSn and compared with an infusion prepared according to the traditional method. RESULTS For non-cytotoxic concentrations (80 and 160µg/mL) the extract inhibited nitrite production, probably due to a direct nitric oxide scavenging. Furthermore, inhibition of proteasome activity was verified, leading to accumulation of ubiquitinated proteins. The extract also increased the conversion of the microtubule-associated protein light chain LC3-I to LC3-II, a marker of autophagy. Polyphenols, namely ellagitannins, proanthocyanidins, and quercetin and kaempferol glucuronide derivatives were identified in Fragaria vesca leaves extract. Most of the identified phenolic compounds matched with those found in traditional preparation, the infusion. CONCLUSIONS The extract has a direct nitric oxide scavenging activity giving support to the traditional use of this plant for the treatment of inflammatory disorders. Furthermore, the extract affects the proteolytic systems but its role in cancer treatment requires further studies.


Journal of the Science of Food and Agriculture | 2015

Cymbopogon citratus industrial waste as a potential source of bioactive compounds.

Filipa Tavares; Gustavo Costa; Vera Francisco; Joana Liberal; Artur Figueirinha; Maria Celeste Lopes; Maria Teresa Cruz; Maria Teresa Batista

BACKGROUND Cymbopogon citratus (Cc), commonly known as lemongrass, is a very important crop worldwide, being grown in tropical countries. It is widely used in the food, pharmaceutical, cosmetic and perfumery industries for its essential oil. Cc aqueous extracts are also used in traditional medicine. They contain high levels of polyphenols, which are known for their antioxidant and anti-inflammatory properties. Hydrodistillation of lemongrass essential oil produces an aqueous waste (CcHD) which is discarded. Therefore a comparative study between CcHD and Cc infusion (CcI) was performed to characterize its phytochemical profile and to research its antioxidant and anti-inflammatory potential. RESULTS HPLC-PDA/ESI-MS(n) analysis showed that CcI and CcHD have similar phenolic profiles, with CcHD presenting a higher amount of polyphenols. Additionally, both CcI and CcHD showed antioxidant activity against DPPH (EC50 of 41.72 ± 0.05 and 42.29 ± 0.05 µg mL(-1) respectively) and strong anti-inflammatory properties, by reducing NO production and iNOS expression in macrophages and through their NO-scavenging activity, in a dose-dependent manner. Furthermore, no cytotoxicity was observed. CONCLUSION The data of this study encourage considering the aqueous solution from Cc leaf hydrodistillation as a source of bioactive compounds, which may add great industrial value to this crop.


Journal of Natural Products | 2016

The Flavone Luteolin Inhibits Liver X Receptor Activation

Vera Francisco; Artur Figueirinha; Gustavo Costa; Joana Liberal; Isabel C.F.R. Ferreira; Maria Celeste Lopes; Carmen García-Rodríguez; Maria Teresa Cruz; Maria Teresa Batista

Luteolin is a dietary flavonoid with medicinal properties including antioxidant, antimicrobial, anticancer, antiallergic, and anti-inflammatory. However, the effect of luteolin on liver X receptors (LXRs), oxysterol sensors that regulate cholesterol homeostasis, lipogenesis, and inflammation, has yet to be studied. To unveil the potential of luteolin as an LXRα/β modulator, we investigated by real-time RT-PCR the expression of LXR-target genes, namely, sterol regulatory element binding protein 1c (SREBP-1c) in hepatocytes and ATP-binding cassette transporter (ABC)A1 in macrophages. The lipid content of hepatocytes was evaluated by Oil Red staining. The results demonstrated, for the first time, that luteolin abrogated the LXRα/β agonist-induced LXRα/β transcriptional activity and, consequently, inhibited SREBP-1c expression, lipid accumulation, and ABCA1 expression. Therefore, luteolin could abrogate hypertriglyceridemia associated with LXR activation, thus presenting putative therapeutic effects in diseases associated with deregulated lipid metabolism, such as hepatic steatosis, cardiovascular diseases, and diabetes.


Food Research International | 2017

Urtica spp.: Phenolic composition, safety, antioxidant and anti-inflammatory activities

Ana Rita Carvalho; Gustavo Costa; Artur Figueirinha; Joana Liberal; João A.V. Prior; Maria Celeste Lopes; Maria Teresa Cruz; Maria Teresa Batista

Urtica dioica and other less studied Urtica species (Urticaceae) are often used as a food ingredient. Fifteen hydroxycinnamic acid derivatives and sixteen flavonoids, flavone and flavonol-type glycosides were identified in hydroalcoholic extracts from aerial parts of Urtica dioica L., Urtica urens L. and Urtica membranacea using HPLC-PDA-ESI/MSn. Among them, the 4-caffeoyl-5-p-coumaroylquinic acid and three statin-like 3-hydroxy-3-methylglutaroyl flavone derivatives were identified for the first time in Urtica urens and U. membranacea respectively. Urtica membranacea showed the higher content of flavonoids, mainly luteolin and apigenin C-glycosides, which are almost absent in the other species studied. In vitro, Urtica dioica exhibited greater antioxidant activity but Urtica urens exhibited stronger anti-inflammatory potential. Interestingly, statin-like compounds detected in Urtica membranacea have been associated with hypocholesterolemic activity making this plant interesting for future investigations. None of the extracts were cytotoxic to macrophages and hepatocytes in bioactive concentrations (200 and 350μg/mL), suggesting their safety use in food applications.

Collaboration


Dive into the Joana Liberal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge