Joana Luísa Pereira
University of Aveiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joana Luísa Pereira.
Ecotoxicology | 2013
Sónia P. M. Ventura; A.M.M. Gonçalves; Tânia E. Sintra; Joana Luísa Pereira; Fernando Gonçalves; João A. P. Coutinho
Ionic liquids (ILs) are a novel class of solvents with interesting physicochemical properties. Many different applications have been reported for ILs as alternatives to organic solvents in chemical and bioprocesses. Despite the argued advantage of having low vapor pressure, even the most hydrophobic ILs show some degree of solubility in water, allowing their dispersion into aquatic systems and raising concerns on its pollutant potential. Moreover, nowadays most widespread notion concerning the ILs toxicity is that there is a direct relationship with their hydrophobicity/lipophilicity. This work aims at enlarging the currently limited knowledge on ILs toxicity by addressing negative impacts in aquatic ecosystems and investigating the possibility of designing hydrophobic ILs of low ecotoxicity, by the manipulation of their chemical structures. The impact of aromaticity on the toxicity of different cations (pyridinium, piperidinium, pyrrolidinium and imidazolium) and hydrophobic anions (bis(trifluoromethylsulfonyl)imide [NTf2] and hexafluorophosphate [PF6]) was analysed. Concomitantly, several imidazolium-based ILs of the type [CnCmCjim][NTf2] were also studied to evaluate the effects of the position of the alkyl chain on the ILs’ toxicity. For that purpose, standard assays were performed using organisms of different trophic levels, Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna, allowing to evaluate the consistency of the structure–activity relationships across different biological targets. The results here reported suggest the possibility of designing ILs with an enhanced hydrophobic character and lower toxicity, by elimination of their aromatic nature.
Ecotoxicology | 2009
Joana Luísa Pereira; Sara C. Antunes; Bruno B. Castro; Catarina R. Marques; A.M.M. Gonçalves; Fernando Gonçalves; Ruth Pereira
The Ecological Risk Assessment of pesticides requires data regarding their toxicity to aquatic and terrestrial non-target species. Such requirements concern active ingredient(s), generally not considering the noxious potential of commercial formulations. This work intends to contribute with novel information on the effects of short-term exposures to two herbicides, with different modes of action (Spasor®, Stam Novel Flo 480®), and an insecticide (Lannate®), as well as to corresponding active ingredients (Glyphosate, Propanil and Methomyl, respectively). The microalga Pseudokirchneriella subcapitata (growth inhibition), the cladoceran Daphnia magna (immobilisation), and the earthworm Eisenia andrei (avoidance behaviour) were used as test species. Both herbicides were innocuous to all test organisms at environmentally realistic concentrations, except for Stam and Propanil (highly toxic for Pseudokirchneriella; moderately toxic to Daphnia). Lannate and Methomyl were highly toxic to Daphnia and caused Eisenia to significantly avoid the spiked soil at realistic application rates. The toxicity of formulations either overestimated (e.g. Stam/Propanil for P. subcapitata) or underestimated (e.g. Stam/Propanil for D. magna) that of the active ingredient.
Green Chemistry | 2015
Joana Santos; A.M.M. Gonçalves; Joana Luísa Pereira; B. F. H. T. Figueiredo; Francisca A. e Silva; João A. P. Coutinho; Sónia P. M. Ventura; Fernando Gonçalves
Ionic liquids (ILs) are innovative solvents that can be tuned for their specific application through the selection, or functionalization, of the cation and the anion. Although the cation has been assumed as the main driver of toxicity, the importance of the anion must not be underestimated. This study considers a series of cholinium based ILs aiming at assessing the effects of the functionalization of the cation and the anion on their ecotoxicity. These effects were assessed using three biological models, the microalgae Raphidocelis subcapitata, the macrophyte Lemna minor and the cladoceran Daphnia magna, representing aquatic ecosystems, a major putative recipient of ILs due to their high water solubility. Since the toxicity trends fluctuated depending on the biological model, the results were integrated with previous data through a species sensitivity distribution approach in an attempt to provide a useful safety variable for the design of eco-friendlier ILs. The results reported here challenge some heuristic rules previously proposed for the design of ILs, in particular in what concerns the side-chain effect for the cholinium ILs, and the notion that cholinium-based ILs are inherently safe and less environmentally hazardous than most conventional solvents. Moreover, it was confirmed that structural changes in the ILs promote differences in toxicity highlighting the importance of the role of the anion in their toxicity. Different biological systems yielded different toxicity trends across the IL series tested, also distinct from previous data retrieved with the bacteria V. fischeri; such a novel integration effort challenges the suitability of establishing structure–ecotoxicity relationships for cholinium-based IL design. Overall, this study reinforces the need to perform complete ecotoxicological characterisation before assuming ILs as suitable, environmentally compatible, alternative solvents.
Ecotoxicology and Environmental Safety | 2014
Francisca A. e Silva; Filipa Siopa; Bruna F.H.T. Figueiredo; A.M.M. Gonçalves; Joana Luísa Pereira; Fernando Gonçalves; João A. P. Coutinho; Carlos A. M. Afonso; Sónia P. M. Ventura
Cholinium-based ionic liquids are receiving crescent interest in diverse areas of application given their biological compatibility and potential for industrial application. In this work, mono and dicationic cholinium ionic liquids as well as cholinium derivatives were synthesized and their toxicity assessed using the luminescent bacteria Vibrio fischeri. A range of cholinium derivatives was synthesized, using different amines and the correspondent brominated derivatives, through the alkylation of the amine with the halide in MeCN. The results indicate that their toxicity is highly dependent on the structural modifications of the cholinium cation, mainly related to the alkyl side or linkage chain length, number of hydroxyethyl groups and insertion of carbon-carbon multiple bonds. The data indicated that it is possible to perform environmentally advantageous structural alterations, namely the addition of double bonds, which would not negatively affect V. fischeri. Moreover, the dicationic compounds revealed a significantly lower toxicity than the monocationic counterparts. The picture emerging from the results supports the idea that cholinium derivatives are promising ionic liquids with a low environmental impact, emphasizing the importance of a careful and directed design of ionic liquid structures.
Environmental Toxicology | 2014
Fátima Brandão; Joana Luísa Pereira; Fernando Gonçalves; Bruno Nunes
The Asian clam Corbicula fluminea is an invasive bivalve that has recently spread in Europe and currently represents a large portion of the aquatic biomass in specific areas. Because of the impacts that the species may have in invaded ecosystems, increased knowledge on the physiologic features of the species life‐cycle under different environmental scenarios (e.g., contamination events) is critical to understand the dynamics of the invasion and resulting ecosystem imbalance. The presence of pharmaceutical residues in the aquatic environment has recently received great attention since high levels of contamination have been found, not only in sewage treatment plant effluents, but also in open waters. The present article reports toxicological biochemical effects of paracetamol to Corbicula fluminea following short‐ and long‐term exposures. Oxidative stress parameters were specially focused namely catalase (CAT), glutathione S‐transferases (GSTs), and glutathione reductase (GRed). The effect of tested substances on lipid peroxidation was also investigated. Paracetamol did not induce alterations on CAT activity, caused a significant decrease of GSTs activity following short‐ and long‐term exposure (LOEC values of 532.78 mg L−1 and 30.98 μg L−1, respectively), and was responsible for a significant and dose‐dependent decrease of GRed activity in short‐ and long‐term exposures. These results indicate that exposure to paracetamol can provoke significant alterations on the cellular redox status of C. fluminea. 2011 Wiley Periodicals, Inc. Environ Toxicol 29: 74–83, 2014.
Aquatic Toxicology | 2010
Joana Luísa Pereira; Christopher J. Hill; Richard M. Sibly; Viacheslav N. Bolshakov; Fernando Gonçalves; Lars-Henrik Heckmann; Amanda Callaghan
Daphnia magna is a key invertebrate in the freshwater environment and is used widely as a model in ecotoxicological measurements and risk assessment. Understanding the genomic responses of D. magna to chemical challenges will be of value to regulatory authorities worldwide. Here we exposed D. magna to the insecticide methomyl and the herbicide propanil to compare phenotypic effects with changes in mRNA expression levels. Both pesticides are found in drainage ditches and surface water bodies standing adjacent to crops. Methomyl, a carbamate insecticide widely used in agriculture, inhibits acetylcholinesterase, a key enzyme in nerve transmission. Propanil, an acetanilide herbicide, is used to control grass and broad-leaf weeds. The phenotypic effects of single doses of each chemical were evaluated using a standard immobilisation assay. Immobilisation was linked to global mRNA expression levels using the previously estimated 48h-EC(1)s, followed by hybridization to a cDNA microarray with more than 13,000 redundant cDNA clones representing >5000 unique genes. Following exposure to methomyl and propanil, differential expression was found for 624 and 551 cDNAs, respectively (one-way ANOVA with Bonferroni correction, P</=0.05, more than 2-fold change) and up-regulation was prevalent for both test chemicals. Both pesticides promoted transcriptional changes in energy metabolism (e.g., mitochondrial proteins, ATP synthesis-related proteins), moulting (e.g., chitin-binding proteins, cuticular proteins) and protein biosynthesis (e.g., ribosomal proteins, transcription factors). Methomyl induced the transcription of genes involved in specific processes such as ion homeostasis and xenobiotic metabolism. Propanil highly promoted haemoglobin synthesis and up-regulated genes specifically related to defence mechanisms (e.g., innate immunity response systems) and neuronal pathways. Pesticide-specific toxic responses were found but there is little evidence for transcriptional responses purely restricted to genes associated with the pesticide target site or mechanism of toxicity.
Ecotoxicology | 2011
Cláudia Loureiro; Bruno B. Castro; Joana Luísa Pereira; Fernando Gonçalves
Fully artificial test media can increase reproducibility and standardization in ecotoxicological assessments, but there is still a lack of convergence among ecotoxicology laboratories in aquatic test media with respect to ionic composition, chelators, and organic supplements. We compared the performance of Daphnia magna in three widely-used reconstituted media. The tested media differed in composition: (a) ADaM, an artificial medium based in a synthetic sea salt, with no a priori known chelating properties; (b) ASTM hard water supplemented with algal extract, a semi-artificial medium with unknown chelating properties; and (c) M7, a complex artificial medium containing EDTA as a chelator. All three media were suitable for rearing D. magna (although performance in M7 was suboptimal) and acute EC50 values for reference substances (3,4-DCA, K2Cr2O7) were similar between media. In acute exposures to Cu and Cd, daphniids were least sensitive when reared in M7, as expected due to metal chelation by EDTA. Daphnia sensitivity to Cd was low in ADaM. Thus, these two media were suboptimal for assessing the toxicity of some metals to D. magna in acute tests. We suggest that both the ionic composition of the medium and the presence of chelators should be taken into account when metal toxicity is concerned. Chronic toxicity profiles for Cu suggested a mild chelating effect of the algal extract in ASTM medium. Still, ASTM hard water persists as one of the most suitable media for acute toxicity assessments of metals and metal-contaminated samples.
Journal of Hazardous Materials | 2010
Sara C. Antunes; Joana Luísa Pereira; Anabela Cachada; Armando C. Duarte; Fernando Gonçalves; José Paulo Sousa; Ruth Pereira
This study focused the ecotoxicological evaluation of four different pesticides (chlorpyrifos, glyphosate, vinclozolin, endosulfan), sprayed into an agricultural soil, using a standard battery of aquatic bioassays for testing of soil elutriates: Vibrio fischeri -Microtox(®); Pseudokirchneriella subcapitata growth inhibition; Daphnia magna acute and chronic toxicity. Despite relevant pesticide residues were recovered from the soil matrix (concentrations higher than 1000 μg kg(-1)), much lower concentrations could be retrieved from elutriates (highest records for endosulfan of ca. 250 ng L(-1)and 1400 ng L(-1); dissolved and particulate concentration, respectively) and little effects were generally found in the bioassays. Lethal effects (D. magna 48 h-EC50 of 36.8%) could be noticed following exposure to the endosulfan elutriate. Elutriates induced no toxicity on V. fischeri; algal growth was generally inhibited at high elutriate dilutions and stimulated at the lower elutriate dilutions; and no overall impairment of D. magna life-history was noticed. Results revealed that cross-contamination during field application, input of organic matter and nutrients by elutriates in test solutions, and choice of test species and endpoints may constrain the ecotoxicological assessment. Suitability of established aquatic bioassay test batteries for these purposes, and questioning on whether direct assays with soil organisms could be more protective tools is discussed.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2010
Joana Luísa Pereira; Sara C. Antunes; Ana C. Ferreira; Fernando Gonçalves; Ruth Pereira
Soil avoidance by earthworms has been generally considered a relevant and sensitive endpoint for assessing soil contamination by xenobiotics. However, when pesticide ecotoxicological assessment is concerned, the sensitivity of the recently standardized avoidance assay has been questioned. We hypothesized that this controversy may be due to the specific pesticide mode of action of the chemicals used rather than reveal inconsistencies in the test feasibility, i.e. provided that no pesticides interfering with neuronal pathways are tested, this bioassay should keep expected high levels of sensitivity. In this study, the avoidance behaviour of the earthworm Eisenia andrei under exposure to the carbamate insecticide methomyl [S-methyl N-(methylcarbamoyloxy)thioacetimidate] was linked to the corresponding acetylcholinesterase (AChE) inhibition. Significant AChE inhibition occurred at lower concentrations (from 0.86 mg Kg−1 onwards) than significant avoidance of spiked soil (from 5.62 mg Kg−1 onwards). This indicates that assessments regarding pesticides that have neurotoxic activity may be biased if behavioral endpoints are selected. Despite theoretical hypothesis that have been raised, this should be the first study providing preliminary experimental evidence on such a link between avoidance behavior and neuronal impairment levels in earthworms. Further studies are ongoing that should refine conclusions of this study.
PLOS ONE | 2013
Cláudia Loureiro; Joana Luísa Pereira; M. Arminda Pedrosa; Fernando Gonçalves; Bruno B. Castro
Competition is a major driving force in freshwaters, especially given the cyclic nature and dynamics of pelagic food webs. Competition is especially important in the initial species assortment during colonization and re-colonization events, which depends strongly on the environmental context. Subtle changes, such as saline intrusion, may disrupt competitive relationships and, thus, influence community composition. Bearing this in mind, our objective was to assess whether low salinity levels (using NaCl as a proxy) alter the competitive outcome (measured as the rate of population biomass increase) of Daphnia-Simocephalus experimental microcosms, taking into account interactions with priority effects (sequential species arrival order). With this approach, we aimed to experimentally demonstrate a putative mechanism of differential species sorting in brackish environments or in freshwaters facing secondary salinization. Experiments considered three salinity levels, regarding NaCl added (0.00, 0.75 and 1.50 g L−1), crossed with three competition scenarios (no priority, priority of Daphnia over Simocephalus, and vice-versa). At lower NaCl concentrations (0.00 and 0.75 g L−1), Daphnia was a significantly superior competitor, irrespective of the species inoculation order, suggesting negligible priority effects. However, the strong decrease in Daphnia population growth at 1.50 g L−1 alleviated the competitive pressure on Simocephalus, causing an inversion of the competitive outcome in favour of Simocephalus. The intensity of this inversion depended on the competition scenario. This salinity-mediated disruption of the competitive outcome demonstrates that subtle environmental changes produce indirect effects in key ecological mechanisms, thus altering community composition, which may lead to serious implications in terms of ecosystem functioning (e.g. lake regime shifts due to reduced grazing) and biodiversity.