Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanne Kotz is active.

Publication


Featured researches published by Joanne Kotz.


Nature Chemical Biology | 2015

The promise and peril of chemical probes

C.H. Arrowsmith; James E. Audia; Christopher M. Austin; Jonathan B. Baell; Jonathan Bennett; Julian Blagg; C. Bountra; Paul E. Brennan; Peter J. Brown; Mark Edward Bunnage; Carolyn Buser-Doepner; Robert M. Campbell; Adrian Carter; Philip Cohen; Robert A. Copeland; Ben Cravatt; Jayme L. Dahlin; Dashyant Dhanak; A. Edwards; Mathias Frederiksen; Stephen V. Frye; Nathanael S. Gray; Charles E. Grimshaw; David Hepworth; Trevor Howe; Kilian Huber; Jian Jin; Stefan Knapp; Joanne Kotz; Ryan G. Kruger

Chemical probes are powerful reagents with increasing impacts on biomedical research. However, probes of poor quality or that are used incorrectly generate misleading results. To help address these shortcomings, we will create a community-driven wiki resource to improve quality and convey current best practice.


Cancer Discovery | 2015

Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset

Brinton Seashore-Ludlow; Matthew G. Rees; Jaime H. Cheah; Murat Cokol; Edmund V. Price; Matthew E. Coletti; Victor Victor Jones; Nicole E. Bodycombe; Christian K. Soule; Joshua Gould; Benjamin Alexander; Ava Li; Philip Montgomery; Mathias J. Wawer; Nurdan Kuru; Joanne Kotz; C. Suk-Yee Hon; Benito Munoz; Ted Liefeld; Vlado Dančík; Joshua Bittker; Michelle Palmer; James E. Bradner; Alykhan F. Shamji; Paul A. Clemons; Stuart L. Schreiber

UNLABELLED Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS-mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). SIGNIFICANCE We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses.


Nature Chemical Biology | 2016

Correlating chemical sensitivity and basal gene expression reveals mechanism of action

Matthew G. Rees; Brinton Seashore-Ludlow; Jaime H. Cheah; Drew J. Adams; Edmund Price; Shubhroz Gill; Sarah Javaid; Matthew E. Coletti; Victor Victor Jones; Nicole E Bodycombe; Christian K. Soule; Benjamin Alexander; Ava Li; Philip Montgomery; Joanne Kotz; C. Suk-Yee Hon; Benito Munoz; Ted Liefeld; Vlado Dančík; Daniel A. Haber; Clary B. Clish; Joshua Bittker; Michelle Palmer; Bridget K. Wagner; Paul A. Clemons; Alykhan F. Shamji; Stuart L. Schreiber

Changes in cellular gene expression in response to small-molecule or genetic perturbations have yielded signatures that can connect unknown mechanisms of action (MoA) to ones previously established. We hypothesized that differential basal gene expression could be correlated with patterns of small-molecule sensitivity across many cell lines to illuminate the actions of compounds whose MoA are unknown. To test this idea, we correlated the sensitivity patterns of 481 compounds with ~19,000 basal transcript levels across 823 different human cancer cell lines and identified selective outlier transcripts. This process yielded many novel mechanistic insights, including the identification of activation mechanisms, cellular transporters, and direct protein targets. We found that ML239, originally identified in a phenotypic screen for selective cytotoxicity in breast cancer stem-like cells, most likely acts through activation of fatty acid desaturase 2 (FADS2). These data and analytical tools are available to the research community through the Cancer Therapeutics Response Portal.


Cell | 2015

Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes

Stuart L. Schreiber; Joanne Kotz; Min Li; Jeffrey Aubé; Christopher P. Austin; John C. Reed; Hugh Rosen; E. Lucile White; Larry A. Sklar; Craig W. Lindsley; Benjamin Alexander; Joshua Bittker; Paul A. Clemons; Andrea de Souza; Michael Foley; Michelle Palmer; Alykhan F. Shamji; Mathias J. Wawer; Owen B. McManus; Meng Wu; Beiyan Zou; Haibo Yu; Jennifer E. Golden; Frank J. Schoenen; Anton Simeonov; Ajit Jadhav; Michael R. Jackson; Anthony B. Pinkerton; Thomas Dy Chung; Patrick R. Griffin

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Nature | 2017

Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway

Vasanthi Viswanathan; Matthew J. Ryan; Harshil Dhruv; Shubhroz Gill; Ossia M. Eichhoff; Brinton Seashore-Ludlow; Samuel D. Kaffenberger; John K. Eaton; Kenichi Shimada; Andrew J. Aguirre; Srinivas R. Viswanathan; Shrikanta Chattopadhyay; Pablo Tamayo; Wan Seok Yang; Matthew G. Rees; Sixun Chen; Zarko V. Boskovic; Sarah Javaid; Cherrie Huang; Xiaoyun Wu; Yuen Yi Tseng; Elisabeth Roider; Dong Gao; James M. Cleary; Brian M. Wolpin; Jill P. Mesirov; Daniel A. Haber; Jeffrey A. Engelman; Jesse S. Boehm; Joanne Kotz

Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial–mesenchymal transition in epithelial-derived carcinomas, TGFβ-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.


Nature Chemical Biology | 2015

Corrigendum: The promise and peril of chemical probes

C.H. Arrowsmith; James E. Audia; Christopher M. Austin; Jonathan B. Baell; Jonathan Bennett; Julian Blagg; C. Bountra; Paul E. Brennan; Peter J. Brown; Mark Edward Bunnage; Carolyn Buser-Doepner; Robert M. Campbell; Adrian Carter; Philip R. Cohen; Robert A. Copeland; Ben Cravatt; Jayme L. Dahlin; Dashyant Dhanak; A. Edwards; Mathias Frederiksen; Stephen V. Frye; Nathanael S. Gray; Charles E. Grimshaw; David Hepworth; Trevor Howe; Kilian Huber; Jian Jin; Stefan Knapp; Joanne Kotz; Ryan G. Kruger

Nat. Chem. Biol. 11, 536–541 (2015); published online 21 July 2015; corrected after print 16 September 2015. In the version of this Commentary initially published, there were several errors in the author list and author affiliations. Bryan Roth was incorrectly listed as “Brian Roth” and his correct affiliations are: The National Institute of Mental Health Psychoactive Active Drug Screening Program (NIMH PDSP), Department of Pharmacology, The University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.


Nature Chemical Biology | 2015

Erratum: Corrigendum: The promise and peril of chemical probes

C.H. Arrowsmith; James E. Audia; Christopher M. Austin; Jonathan B. Baell; Jonathan Bennett; Julian Blagg; C. Bountra; Paul E. Brennan; Peter J. Brown; Mark Edward Bunnage; Carolyn Buser-Doepner; Robert M. Campbell; Adrian Carter; Philip R. Cohen; Robert A. Copeland; Ben Cravatt; Jayme L. Dahlin; Dashyant Dhanak; A. Edwards; Mathias Frederiksen; Stephen V. Frye; Nathanael S. Gray; Charles E. Grimshaw; David Hepworth; Trevor Howe; Kilian Huber; Jian Jin; Stefan Knapp; Joanne Kotz; Ryan G. Kruger

Nat. Chem. Biol. 11, 536–541 (2015); published online 21 July 2015; corrected after print 16 September 2015. In the version of this Commentary initially published, there were several errors in the author list and author affiliations. Bryan Roth was incorrectly listed as “Brian Roth” and his correct affiliations are: The National Institute of Mental Health Psychoactive Active Drug Screening Program (NIMH PDSP), Department of Pharmacology, The University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.


Nature Chemical Biology | 2015

Erratum: The promise and peril of chemical probes (Nature Chemical Biology (2015) 11 (536-541))

C.H. Arrowsmith; James E. Audia; Christopher M. Austin; Jonathan B. Baell; Jonathan Bennett; Julian Blagg; C. Bountra; Paul E. Brennan; Peter J. Brown; Mark Edward Bunnage; Carolyn Buser-Doepner; Robert M. Campbell; Adrian Carter; Philip R. Cohen; Robert A. Copeland; Ben Cravatt; Jayme L. Dahlin; Dashyant Dhanak; A. Edwards; Mathias Frederiksen; Stephen V. Frye; Nathanael S. Gray; Charles E. Grimshaw; David Hepworth; Trevor Howe; Kilian Huber; Jian Jin; Stefan Knapp; Joanne Kotz; Ryan G. Kruger

Nat. Chem. Biol. 11, 536–541 (2015); published online 21 July 2015; corrected after print 16 September 2015. In the version of this Commentary initially published, there were several errors in the author list and author affiliations. Bryan Roth was incorrectly listed as “Brian Roth” and his correct affiliations are: The National Institute of Mental Health Psychoactive Active Drug Screening Program (NIMH PDSP), Department of Pharmacology, The University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.


Nature Chemical Biology | 2008

Scientists without borders.

Joanne Kotz

A new web portal helps connect scientists and coordinate scientific efforts to address the challenges of the developing world.


Nature Chemical Biology | 2005

Don't forget the sugar

Joanne Kotz

The generation of long-term memory is believed to result from strengthening of neuronal connections and synaptic remodeling. However, the molecular basis for these events is little understood. An inhibitor, 2-deoxy-D-galactose (2-dGal), that blocks the incorporation of fucose-(1-2)-galactose (Fuc-(1-2)-Gal) into glycoproteins causes reversible amnesia in animals. In the 9 February issue of the Journal of the American Chemical Society, Kalovidouris et al. describe the use of chemical methods to identify a role for Fuc-(1-2)-Gal-mediated pathways in promoting hippocampal neuronal growth.

Collaboration


Dive into the Joanne Kotz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Cravatt

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jayme L. Dahlin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jian Jin

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge