Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joe Kowalski is active.

Publication


Featured researches published by Joe Kowalski.


Journal of Biological Chemistry | 1998

Vascular Endothelial Growth Factor Regulates Endothelial Cell Survival through the Phosphatidylinositol 3′-Kinase/Akt Signal Transduction Pathway REQUIREMENT FOR Flk-1/KDR ACTIVATION

Hans-Peter Gerber; Amy Mcmurtrey; Joe Kowalski; Minhong Yan; Bruce A. Keyt; Vishva M. Dixit; Napoleone Ferrara

Vascular endothelial growth factor (VEGF) has been found to have various functions on endothelial cells, the most prominent of which is the induction of proliferation and differentiation. In this report we demonstrate that VEGF or a mutant, selectively binding to the Flk-1/KDR receptor, displayed high levels of survival activity, whereas Flt-1-specific ligands failed to promote survival of serum-starved primary human endothelial cells. This activity was blocked by the phosphatidylinositol 3′-kinase (PI3-kinase)-specific inhibitors wortmannin and LY294002. Endothelial cells cultured in the presence of VEGF and the Flk-1/KDR-selective VEGF mutant induced phosphorylation of the serine-threonine kinase Akt in a PI3-kinase-dependent manner. Akt activation was not detected in response to stimulation with placenta growth factor or an Flt-1-selective VEGF mutant. Furthermore, a constitutively active Akt was sufficient to promote survival of serum-starved endothelial cells in transient transfection experiments. In contrast, overexpression of a dominant-negative form of Akt blocked the survival effect of VEGF. These findings identify the Flk-1/KDR receptor and the PI3-kinase/Akt signal transduction pathway as crucial elements in the processes leading to endothelial cell survival induced by VEGF. Inhibition of apoptosis may represent a major aspect of the regulatory activity of VEGF on the vascular endothelium.


Nature Medicine | 1999

VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation.

Hans-Peter Gerber; Thiennu H. Vu; Anne M. Ryan; Joe Kowalski; Zena Werb; Napoleone Ferrara

Hypertrophic chondrocytes in the epiphyseal growth plate express the angiogenic protein vascular endothelial growth factor (VEGF). To determine the role of VEGF in endochondral bone formation, we inactivated this factor through the systemic administration of a soluble receptor chimeric protein (Flt-(1-3)-IgG) to 24-day-old mice. Blood vessel invasion was almost completely suppressed, concomitant with impaired trabecular bone formation and expansion of hypertrophic chondrocyte zone. Recruitment and/or differentiation of chondroclasts, which express gelatinase B/matrix metalloproteinase-9, and resorption of terminal chondrocytes decreased. Although proliferation, differentiation and maturation of chondrocytes were apparently normal, resorption was inhibited. Cessation of the anti-VEGF treatment was followed by capillary invasion, restoration of bone growth, resorption of the hypertrophic cartilage and normalization of the growth plate architecture. These findings indicate that VEGF-mediated capillary invasion is an essential signal that regulates growth plate morphogenesis and triggers cartilage remodeling. Thus, VEGF is an essential coordinator of chondrocyte death, chondroclast function, extracellular matrix remodeling, angiogenesis and bone formation in the growth plate.


Nature | 2006

Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis.

John Ridgway; Gu Zhang; Yan Wu; Scott Stawicki; Wei Ching Liang; Yvan Chanthery; Joe Kowalski; Ryan J. Watts; Christopher A. Callahan; Ian Kasman; Mallika Singh; May Chien; Christine Tan; Jo Anne Hongo; Fred de Sauvage; Greg Plowman; Minhong Yan

Haploinsufficiency of Dll4, a vascular-specific Notch ligand, has shown that it is essential for embryonic vascular development and arteriogenesis. Mechanistically, it is unclear how the Dll4-mediated Notch pathway contributes to complex vascular processes that demand meticulous coordination of multiple signalling pathways. Here we show that Dll4-mediated Notch signalling has a unique role in regulating endothelial cell proliferation and differentiation. Neutralizing Dll4 with a Dll4-selective antibody rendered endothelial cells hyperproliferative, and caused defective cell fate specification or differentiation both in vitro and in vivo. In addition, blocking Dll4 inhibited tumour growth in several tumour models. Remarkably, antibodies against Dll4 and antibodies against vascular endothelial growth factor (VEGF) had paradoxically distinct effects on tumour vasculature. Our data also indicate that Dll4-mediated Notch signalling is crucial during active vascularization, but less important for normal vessel maintenance. Furthermore, unlike blocking Notch signalling globally, neutralizing Dll4 had no discernable impact on intestinal goblet cell differentiation, supporting the idea that Dll4-mediated Notch signalling is largely restricted to the vascular compartment. Therefore, targeting Dll4 might represent a broadly efficacious and well-tolerated approach for the treatment of solid tumours.


Journal of Biological Chemistry | 1999

Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo.

Xiaohua Xin; Suya Yang; Joe Kowalski; Mary E. Gerritsen

Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that functions as a transcription factor to mediate ligand-dependent transcriptional regulation. Activation of PPARγ by the naturally occurring ligand, 15-deoxy-Δ12,14-prostaglandin J2(15d-PGJ2), or members of a new class of oral antidiabetic agents, e.g. BRL49653 and ciglitizone, has been linked to adipocyte differentiation, regulation of glucose homeostasis, inhibition of macrophage and monocyte activation, and inhibition of tumor cell proliferation. Here we report that human umbilical vein endothelial cells (HUVEC) express PPARγ mRNA and protein. Activation of PPARγ by the specific ligands 15d-PGJ2, BRL49653, or ciglitizone, dose dependently suppresses HUVEC differentiation into tube-like structures in three-dimensional collagen gels. In contrast, specific PPARα and -β ligands do not affect tube formation although mRNA for these receptors are expressed in HUVEC. PPARγ ligands also inhibit the proliferative response of HUVEC to exogenous growth factors. Treatment of HUVEC with 15d-PGJ2also reduced mRNA levels of vascular endothelial cell growth factor receptors 1 (Flt-1) and 2 (Flk/KDR) and urokinase plasminogen activator and increased plasminogen activator inhibitor-1 (PAI-1) mRNA. Finally, administration of 15d-PGJ2 inhibited vascular endothelial cell growth factor-induced angiogenesis in the rat cornea. These observations demonstrate that PPARγ ligands are potent inhibitors of angiogenesis in vitro and in vivo, and suggest that PPARγ may be an important molecular target for the development of small-molecule inhibitors of angiogenesis.


Nature | 2001

Identification of an angiogenic mitogen selective for endocrine gland endothelium

Jennifer LeCouter; Joe Kowalski; Jessica Foster; Phil Hass; Zemin Zhang; Lisa Dillard-Telm; Gretchen Frantz; Linda Rangell; Leo Deguzman; Gilbert-Andre Keller; Franklin Peale; Austin L. Gurney; Kenneth J. Hillan; Napoleone Ferrara

The known endothelial mitogens stimulate growth of vascular endothelial cells without regard to their tissue of origin. Here we report a growth factor that is expressed largely in one type of tissue and acts selectively on one type of endothelium. This molecule, called endocrine-gland-derived vascular endothelial growth factor (EG-VEGF), induced proliferation, migration and fenestration (the formation of membrane discontinuities) in capillary endothelial cells derived from endocrine glands. However, EG-VEGF had little or no effect on a variety of other endothelial and non-endothelial cell types tested. Similar to VEGF, EG-VEGF possesses a HIF-1 binding site, and its expression is induced by hypoxia. Both EG-VEGF and VEGF resulted in extensive angiogenesis and cyst formation when delivered in the ovary. However, unlike VEGF, EG-VEGF failed to promote angiogenesis in the cornea or skeletal muscle. Expression of human EG-VEGF messenger RNA is restricted to the steroidogenic glands, ovary, testis, adrenal and placenta and is often complementary to the expression of VEGF, suggesting that these molecules function in a coordinated manner. EG-VEGF is an example of a class of highly specific mitogens that act to regulate proliferation and differentiation of the vascular endothelium in a tissue-specific manner.


American Journal of Pathology | 2001

Hepatocyte Growth Factor Enhances Vascular Endothelial Growth Factor-Induced Angiogenesis in Vitro and in Vivo

Xiaohua Xin; Suya Yang; Gladys Ingle; Constance Zlot; Linda Rangell; Joe Kowalski; Ralph Schwall; Napoleone Ferrara; Mary E. Gerritsen

Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis in both physiological and pathological processes. Hepatocyte growth factor (HGF) is a mesenchyme-derived mitogen that also stimulates cell migration, and branching and/or tubular morphogenesis of epithelial and endothelial cells. In the present study, we tested the hypothesis that simultaneous administration of HGF and VEGF would synergistically promote new blood vessel formation. HGF acted in concert with VEGF to promote human endothelial cell survival and tubulogenesis in 3-D type I collagen gels, a response that did not occur with either growth factor alone. The synergistic effects of VEGF and HGF on endothelial survival correlated with greatly augmented mRNA levels for the anti-apoptotic genes Bcl-2 and A1. Co-culture experiments with human neonatal dermal fibroblasts and human umbilical vein endothelial cells demonstrated that neonatal dermal fibroblasts, in combination with VEGF, stimulated human umbilical vein endothelial cells tubulogenesis through the paracrine secretion of HGF. Finally, in vivo experiments demonstrated that the combination of HGF and VEGF increased neovascularization in the rat corneal assay greater than either growth factor alone. We suggest that combination therapy using HGF and VEGF co-administration may provide a more effective strategy to achieve therapeutic angiogenesis.


The EMBO Journal | 2004

VEGF-null cells require PDGFR α signaling-mediated stromal fibroblast recruitment for tumorigenesis

Jianying Dong; Jeremy Grunstein; Max L. Tejada; Frank Peale; Gretchen Frantz; Wei-Ching Liang; Wei Bai; Lanlan Yu; Joe Kowalski; Xiaohuan Liang; Germaine Fuh; Hans-Peter Gerber; Napoleone Ferrara

We generated VEGF‐null fibrosarcomas from VEGF‐loxP mouse embryonic fibroblasts to investigate the mechanisms of tumor escape after VEGF inactivation. These cells were found to be tumorigenic and angiogenic in vivo in spite of the absence of tumor‐derived VEGF. However, VEGF derived from host stroma was readily detected in the tumor mass and treatment with a newly developed anti‐VEGF monoclonal antibody substantially inhibited tumor growth. The functional significance of stroma‐derived VEGF indicates that the recruitment of stromal cells is critical for the angiogenic and tumorigenic properties of these cells. Here we identified PDGF AA as the major stromal fibroblast chemotactic factor produced by tumor cells, and demonstrated that disrupting the paracrine PDGFR α signaling between tumor cells and stromal fibroblasts by soluble PDGFR α‐IgG significantly reduced tumor growth. Thus, PDGFR α signaling is required for the recruitment of VEGF‐producing stromal fibroblasts for tumor angiogenesis and growth. Our findings highlight a novel aspect of PDGFR α signaling in tumorigenesis.


Cancer Cell | 2008

Blocking Neuropilin-2 Function Inhibits Tumor Cell Metastasis

Maresa Caunt; Judy Mak; Wei-Ching Liang; Scott Stawicki; Qi Pan; Raymond K. Tong; Joe Kowalski; Calvin Ho; Hani Bou Reslan; Jed Ross; Leanne Berry; Ian Kasman; Constance Zlot; Zhiyong Cheng; Jennifer Le Couter; Ellen Filvaroff; Greg Plowman; Franklin Peale; Dorothy French; Richard A. D. Carano; Alexander W. Koch; Yan Wu; Ryan J. Watts; Marc Tessier-Lavigne; Anil Bagri

Metastasis, which commonly uses lymphatics, accounts for much of the mortality associated with cancer. The vascular endothelial growth factor (VEGF)-C coreceptor, neuropilin-2 (Nrp2), modulates but is not necessary for developmental lymphangiogenesis, and its significance for metastasis is unknown. An antibody to Nrp2 that blocks VEGFC binding disrupts VEGFC-induced lymphatic endothelial cell migration, but not proliferation, in part independently of VEGF receptor activation. It does not affect established lymphatics in normal adult mice but reduces tumoral lymphangiogenesis and, importantly, functional lymphatics associated with tumors. It also reduces metastasis to sentinel lymph nodes and distant organs, apparently by delaying the departure of tumor cells from the primary tumor. Our results demonstrate that Nrp2, which was originally identified as an axon-guidance receptor, is an attractive target for modulating metastasis.


Journal of Biological Chemistry | 2002

ANGPTL3 Stimulates Endothelial Cell Adhesion and Migration via Integrin αvβ3 and Induces Blood Vessel Formation in Vivo

Gieri Camenisch; Maria Teresa Pisabarro; Daniel Sherman; Joe Kowalski; Mark Nagel; Phil Hass; Ming-Hong Xie; Austin L. Gurney; Sarah C. Bodary; Xiao Huan Liang; Kevin Clark; Maureen Beresini; Napoleone Ferrara; Hans-Peter Gerber

The angiopoietin family of secreted factors is functionally defined by the C-terminal fibrinogen (FBN)-like domain, which mediates binding to the Tie2 receptor and thereby facilitates a cascade of events ultimately regulating blood vessel formation. By screening expressed sequence tag data bases for homologies to a consensus FBN-like motive, we have identified ANGPTL3, a liver-specific, secreted factor consisting of an N-terminal coiled-coil domain and the C-terminal FBN-like domain. Co-immunoprecipitation experiments, however, failed to detect binding of ANGPTL3 to the Tie2 receptor. A molecular model of the FBN-like domain of ANGPTL3 was generated and predicted potential binding to integrins. This hypothesis was experimentally confirmed by the finding that recombinant ANGPTL3 bound to αvβ3 and induced integrin αvβ3-dependent haptotactic endothelial cell adhesion and migration and stimulated signal transduction pathways characteristic for integrin activation, including phosphorylation of Akt, mitogen-activated protein kinase, and focal adhesion kinase. When tested in the rat corneal assay, ANGPTL3 strongly induced angiogenesis with comparable magnitude as observed for vascular endothelial growth factor-A. Moreover, the C-terminal FBN-like domain alone was sufficient to induce endothelial cell adhesion and in vivo angiogenesis. Taken together, our data demonstrate that ANGPTL3 is the first member of the angiopoietin-like family of secreted factors binding to integrin αvβ3 and suggest a possible role in the regulation of angiogenesis.


The EMBO Journal | 2000

A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration

Hendrik Gille; Joe Kowalski; Lanlan Yu; Helen Hsifei Chen; M. Teresa Pisabarro; Terri Lynn Davis-Smyth; Napoleone Ferrara

Vascular endothelial growth factor (VEGF) has two highly homologous tyrosine kinase receptors: Flt‐1 (VEGFR‐1) and KDR (VEGFR‐2). KDR is strongly phosphorylated on tyrosines and can transmit mitogenic and motogenic signals following VEGF binding, while Flt‐1 is markedly less effective in mediating such functions. To dissect the regions that account for the differences between the two receptors, we generated a series of chimeric Flt‐1–KDR molecules. We found that the juxtamembrane region of Flt‐1 prevents key signaling functions. When the juxtamembrane region of Flt‐1 is replaced by that of KDR, Flt‐1 becomes competent to mediate endothelial cell migration and phosphatidylinositol 3′‐kinase activation in response to VEGF. Further mutational analysis shows that a short divergent sequence is responsible for such repressor function. However, mutant Flt‐1 receptors lacking this sequence do not transmit effective proliferative signals, suggesting that this receptor function is regulated separately. These results define a novel functional domain that serves to repress Flt‐1 activity in endothelial cells.

Collaboration


Dive into the Joe Kowalski's collaboration.

Researchain Logo
Decentralizing Knowledge