Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott Stawicki is active.

Publication


Featured researches published by Scott Stawicki.


Nature | 2006

Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis.

John Ridgway; Gu Zhang; Yan Wu; Scott Stawicki; Wei Ching Liang; Yvan Chanthery; Joe Kowalski; Ryan J. Watts; Christopher A. Callahan; Ian Kasman; Mallika Singh; May Chien; Christine Tan; Jo Anne Hongo; Fred de Sauvage; Greg Plowman; Minhong Yan

Haploinsufficiency of Dll4, a vascular-specific Notch ligand, has shown that it is essential for embryonic vascular development and arteriogenesis. Mechanistically, it is unclear how the Dll4-mediated Notch pathway contributes to complex vascular processes that demand meticulous coordination of multiple signalling pathways. Here we show that Dll4-mediated Notch signalling has a unique role in regulating endothelial cell proliferation and differentiation. Neutralizing Dll4 with a Dll4-selective antibody rendered endothelial cells hyperproliferative, and caused defective cell fate specification or differentiation both in vitro and in vivo. In addition, blocking Dll4 inhibited tumour growth in several tumour models. Remarkably, antibodies against Dll4 and antibodies against vascular endothelial growth factor (VEGF) had paradoxically distinct effects on tumour vasculature. Our data also indicate that Dll4-mediated Notch signalling is crucial during active vascularization, but less important for normal vessel maintenance. Furthermore, unlike blocking Notch signalling globally, neutralizing Dll4 had no discernable impact on intestinal goblet cell differentiation, supporting the idea that Dll4-mediated Notch signalling is largely restricted to the vascular compartment. Therefore, targeting Dll4 might represent a broadly efficacious and well-tolerated approach for the treatment of solid tumours.


Nature | 2010

Therapeutic antibody targeting of individual Notch receptors.

Yan Wu; Carol Cain-Hom; Lisa Choy; Thijs J. Hagenbeek; Gladys P. de Leon; Yongmei Chen; David Finkle; Rayna Venook; Xiumin Wu; John Ridgway; Dorreyah Schahin-Reed; Graham J. Dow; Amy Shelton; Scott Stawicki; Ryan J. Watts; Jeff Zhang; Robert Choy; Peter Howard; Lisa C. Kadyk; Minhong Yan; Jiping Zha; Christopher A. Callahan; Sarah G. Hymowitz; Christian W. Siebel

The four receptors of the Notch family are widely expressed transmembrane proteins that function as key conduits through which mammalian cells communicate to regulate cell fate and growth. Ligand binding triggers a conformational change in the receptor negative regulatory region (NRR) that enables ADAM protease cleavage at a juxtamembrane site that otherwise lies buried within the quiescent NRR. Subsequent intramembrane proteolysis catalysed by the γ-secretase complex liberates the intracellular domain (ICD) to initiate the downstream Notch transcriptional program. Aberrant signalling through each receptor has been linked to numerous diseases, particularly cancer, making the Notch pathway a compelling target for new drugs. Although γ-secretase inhibitors (GSIs) have progressed into the clinic, GSIs fail to distinguish individual Notch receptors, inhibit other signalling pathways and cause intestinal toxicity, attributed to dual inhibition of Notch1 and 2 (ref. 11). To elucidate the discrete functions of Notch1 and Notch2 and develop clinically relevant inhibitors that reduce intestinal toxicity, we used phage display technology to generate highly specialized antibodies that specifically antagonize each receptor paralogue and yet cross-react with the human and mouse sequences, enabling the discrimination of Notch1 versus Notch2 function in human patients and rodent models. Our co-crystal structure shows that the inhibitory mechanism relies on stabilizing NRR quiescence. Selective blocking of Notch1 inhibits tumour growth in pre-clinical models through two mechanisms: inhibition of cancer cell growth and deregulation of angiogenesis. Whereas inhibition of Notch1 plus Notch2 causes severe intestinal toxicity, inhibition of either receptor alone reduces or avoids this effect, demonstrating a clear advantage over pan-Notch inhibitors. Our studies emphasize the value of paralogue-specific antagonists in dissecting the contributions of distinct Notch receptors to differentiation and disease and reveal the therapeutic promise in targeting Notch1 and Notch2 independently.


Science | 2008

PirB is a functional receptor for myelin inhibitors of axonal regeneration.

Jasvinder Atwal; Julie Pinkston-Gosse; Josh Syken; Scott Stawicki; Yan Wu; Carla J. Shatz; Marc Tessier-Lavigne

A major barrier to regenerating axons after injury in the mammalian central nervous system is an unfavorable milieu. Three proteins found in myelin—Nogo, MAG, and OMgp—inhibit axon regeneration in vitro and bind to the glycosylphosphatidylinositol-anchored Nogo receptor (NgR). However, genetic deletion of NgR has only a modest disinhibitory effect, suggesting that other binding receptors for these molecules probably exist. With the use of expression cloning, we have found that paired immunoglobulin-like receptor B (PirB), which has been implicated in nervous system plasticity, is a high-affinity receptor for Nogo, MAG, and OMgp. Interfering with PirB activity, either with antibodies or genetically, partially rescues neurite inhibition by Nogo66, MAG, OMgp, and myelin in cultured neurons. Blocking both PirB and NgR activities leads to near-complete release from myelin inhibition. Our results implicate PirB in mediating regeneration block, identify PirB as a potential target for axon regeneration therapies, and provide an explanation for the similar enhancements of visual system plasticity in PirB and NgR knockout mice.


Cancer Cell | 2008

Blocking Neuropilin-2 Function Inhibits Tumor Cell Metastasis

Maresa Caunt; Judy Mak; Wei-Ching Liang; Scott Stawicki; Qi Pan; Raymond K. Tong; Joe Kowalski; Calvin Ho; Hani Bou Reslan; Jed Ross; Leanne Berry; Ian Kasman; Constance Zlot; Zhiyong Cheng; Jennifer Le Couter; Ellen Filvaroff; Greg Plowman; Franklin Peale; Dorothy French; Richard A. D. Carano; Alexander W. Koch; Yan Wu; Ryan J. Watts; Marc Tessier-Lavigne; Anil Bagri

Metastasis, which commonly uses lymphatics, accounts for much of the mortality associated with cancer. The vascular endothelial growth factor (VEGF)-C coreceptor, neuropilin-2 (Nrp2), modulates but is not necessary for developmental lymphangiogenesis, and its significance for metastasis is unknown. An antibody to Nrp2 that blocks VEGFC binding disrupts VEGFC-induced lymphatic endothelial cell migration, but not proliferation, in part independently of VEGF receptor activation. It does not affect established lymphatics in normal adult mice but reduces tumoral lymphangiogenesis and, importantly, functional lymphatics associated with tumors. It also reduces metastasis to sentinel lymph nodes and distant organs, apparently by delaying the departure of tumor cells from the primary tumor. Our results demonstrate that Nrp2, which was originally identified as an axon-guidance receptor, is an attractive target for modulating metastasis.


PLOS ONE | 2010

Wnt Isoform-Specific Interactions with Coreceptor Specify Inhibition or Potentiation of Signaling by LRP6 Antibodies

Yan Gong; Eric Bourhis; Cecilia Chiu; Scott Stawicki; Venita I. Dealmeida; Bob Y. Liu; Khanhky Phamluong; Tim C. Cao; Richard A. D. Carano; James A. Ernst; Mark Solloway; Bonnee Rubinfeld; Rami N. Hannoush; Yan Wu; Paul Polakis; Mike Costa

β-catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may allow for differential regulation of signaling by Wnt isoforms during development, and can be exploited with antibodies to differentially manipulate Wnt signaling in specific tissues or disease states.


The EMBO Journal | 2007

Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding

Brent A. Appleton; Ping Wu; Janice Maloney; JianPing Yin; Wei-Ching Liang; Scott Stawicki; Kyle Mortara; Krista K. Bowman; J. Michael Elliott; William Desmarais; J. Fernando Bazan; Anil Bagri; Marc Tessier-Lavigne; Alexander W. Koch; Yan Wu; Ryan J. Watts; Christian Wiesmann

Neuropilins (Nrps) are co‐receptors for class 3 semaphorins and vascular endothelial growth factors and important for the development of the nervous system and the vasculature. The extracellular portion of Nrp is composed of two domains that are essential for semaphorin binding (a1a2), two domains necessary for VEGF binding (b1b2), and one domain critical for receptor dimerization (c). We report several crystal structures of Nrp1 and Nrp2 fragments alone and in complex with antibodies that selectively block either semaphorin or vascular endothelial growth factor (VEGF) binding. In these structures, Nrps adopt an unexpected domain arrangement in which the a2, b1, and b2 domains form a tightly packed core that is only loosely connected to the a1 domain. The locations of the antibody epitopes together with in vitro experiments indicate that VEGF and semaphorin do not directly compete for Nrp binding. Based upon our structural and functional data, we propose possible models for ligand binding to neuropilins.


Science Translational Medicine | 2011

Amelioration of Type 2 Diabetes by Antibody-Mediated Activation of Fibroblast Growth Factor Receptor 1

Ai-Luen Wu; Ganesh Kolumam; Scott Stawicki; Yongmei Chen; Jun Li; Jose Zavala-Solorio; Khanhky Phamluong; Bo Feng; Li Li; Scot A. Marsters; Lance Kates; Nicholas van Bruggen; Maya Leabman; Anne Wong; David West; Howard M. Stern; Elizabeth Luis; Hok Seon Kim; Daniel G. Yansura; Andrew S. Peterson; Ellen Filvaroff; Yan Wu; Junichiro Sonoda

Antibody-mediated activation of fibroblast growth factor receptor 1 reverses the diabetic phenotype in mice, likely by affecting brown adipose tissues. Getting at Brown Fat It’s fun to indulge in holiday cheer, if only a holiday miracle allowed one to avoid the often-linked weight gain. At the molecular level, obesity and type 2 diabetes can be linked by the fibroblast growth factor (FGF) family of proteins and their receptors (FGFRs), with some factors showing disease-reversing capabilities. For instance, overweight, diabetic mice treated with FGF21 regain normal metabolism and lose weight, even without spending hours on a treadmill. However, attempts to use this fat-burning factor in humans have not been successful, owing to poor pharmacokinetics as well as concerns over negative effects of modified FGF21 proteins. In this issue, Wu and colleagues describe an antibody-based FGF21 mimic that circumvents these limitations to overcome metabolic disease in mice. The authors reasoned that robust drugs that closely mimic FGF21 function would similarly exert antidiabetic effects. Using phage display technology, Wu et al. identified monoclonal antibodies (R1MAbs) that were specifically targeted tissues that play key roles in diabetes and obesity, including adipose (fat) tissue. In contrast to FGF21, which binds several forms of the FGFR throughout the body, the phage-derived R1MAbs bound only to FGFR1—a receptor present in the pancreas and in brown and white adipose tissues. Diabetic mice with high blood sugar (hyperglycemia) were injected once with either R1MAbs or a control antibody. Within 1 week, blood glucose concentrations in the R1MAb-treated mice were normalized and remained at lower levels compared to placebo-treated mice for more than 1 month without reaching dangerously low blood glucose concentrations (hypoglycemia). The R1MAbs also helped the diabetic mice to lose weight, indicating that this antibody agonist of FGFR1 is a dual-action drug for both diabetes and obesity. Wu et al. also shed light on the mechanism of action of their R1MAbs, showing that they work via FGFR homodimerization in brown adipose tissue. With improved pharmacokinetics over FGF21, in addition to a specific receptor-targeting mechanism, these R1MAbs could enter human clinical trials for diabetes and other obesity-related diseases in the near future. Unfortunately, a miracle drug won’t be available in time for the holidays, so perhaps, this year, opt for the sugar-free egg nog. Clinical use of recombinant fibroblast growth factor 21 (FGF21) for the treatment of type 2 diabetes and other disorders linked to obesity has been proposed; however, its clinical development has been challenging owing to its poor pharmacokinetics. Here, we describe an alternative antidiabetic strategy using agonistic anti-FGFR1 (FGF receptor 1) antibodies (R1MAbs) that mimic the metabolic effects of FGF21. A single injection of R1MAb into obese diabetic mice induced acute and sustained amelioration of hyperglycemia, along with marked improvement in hyperinsulinemia, hyperlipidemia, and hepatosteatosis. R1MAb activated the mitogen-activated protein kinase pathway in adipose tissues, but not in liver, and neither FGF21 nor R1MAb improved glucose clearance in lipoatrophic mice, which suggests that adipose tissues played a central role in the observed metabolic effects. In brown adipose tissues, both FGF21 and R1MAb induced phosphorylation of CREB (cyclic adenosine 5′-monophosphate response element–binding protein), and mRNA expression of PGC-1α (peroxisome proliferator–activated receptor-γ coactivator 1α) and the downstream genes associated with oxidative metabolism. Collectively, we propose FGFR1 in adipose tissues as a major functional receptor for FGF21, as an upstream regulator of PGC-1α, and as a compelling target for antibody-based therapy for type 2 diabetes and other obesity-associated disorders.


Developmental Cell | 2011

Robo4 Maintains Vessel Integrity and Inhibits Angiogenesis by Interacting with UNC5B

Alexander W. Koch; Thomas Mathivet; Bruno Larrivée; Raymond K. Tong; Joe Kowalski; Laurence Pibouin-Fragner; Karine Bouvrée; Scott Stawicki; Katrina Nicholes; Nisha Rathore; Suzie J. Scales; Elizabeth Luis; Raquel del Toro; Catarina Freitas; Christiane Bréant; Annie Michaud; Pierre Corvol; Jean-Léon Thomas; Yan Wu; Franklin Peale; Ryan J. Watts; Marc Tessier-Lavigne; Anil Bagri; Anne Eichmann

Robo4 is an endothelial cell-specific member of the Roundabout axon guidance receptor family. To identify Robo4 binding partners, we performed a protein-protein interaction screen with the Robo4 extracellular domain. We find that Robo4 specifically binds to UNC5B, a vascular Netrin receptor, revealing unexpected interactions between two endothelial guidance receptors. We show that Robo4 maintains vessel integrity by activating UNC5B, which inhibits signaling downstream of vascular endothelial growth factor (VEGF). Function-blocking monoclonal antibodies against Robo4 and UNC5B increase angiogenesis and disrupt vessel integrity. Soluble Robo4 protein inhibits VEGF-induced vessel permeability and rescues barrier defects in Robo4(-/-) mice, but not in mice treated with anti-UNC5B. Thus, Robo4-UNC5B signaling maintains vascular integrity by counteracting VEGF signaling in endothelial cells, identifying a novel function of guidance receptor interactions in the vasculature.


Structure | 2012

Structural Basis for the Dual Recognition of Helical Cytokines IL-34 and CSF-1 by CSF-1R.

Xiaolei Ma; Wei Yu Lin; Yongmei Chen; Scott Stawicki; Kiran Mukhyala; Yan Wu; Flavius Martin; J. Fernando Bazan; Melissa A. Starovasnik

Lacking any discernible sequence similarity, interleukin-34 (IL-34) and colony stimulating factor 1 (CSF-1) signal through a common receptor CSF-1R on cells of mononuclear phagocyte lineage. Here, the crystal structure of dimeric IL-34 reveals a helical cytokine fold homologous to CSF-1, and we further show that the complex architecture of IL-34 bound to the N-terminal immunoglobulin domains of CSF-1R is similar to the CSF-1/CSF-1R assembly. However, unique conformational adaptations in the receptor domain geometry and intermolecular interface explain the cross-reactivity of CSF-1R for two such distantly related ligands. The docking adaptations of the IL-34 and CSF-1 quaternary complexes, when compared to the stem cell factor assembly, draw a common evolutionary theme for transmembrane signaling. In addition, the structure of IL-34 engaged by a Fab fragment reveals the mechanism of a neutralizing antibody that can help deconvolute IL-34 from CSF-1 biology, with implications for therapeutic intervention in diseases with myeloid pathogenic mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Structural insight into distinct mechanisms of protease inhibition by antibodies

Yan Wu; Charles Eigenbrot; Wei-Ching Liang; Scott Stawicki; Steven Shia; Bin Fan; Rajkumar Ganesan; Michael T. Lipari; Daniel Kirchhofer

To better understand how the relatively flat antigen-combining sites of antibodies interact with the concave shaped substrate-binding clefts of proteases, we determined the structures of two antibodies in complex with the trypsin-like hepatocyte growth-factor activator (HGFA). The two inhibitory antibodies, Ab58 and Ab75, were generated from a human Fab phage display library with synthetic diversity in the three complementarity determining regions (H1, H2, and H3) of the heavy chain, mimicking the natural diversity of the human Ig repertoire. Biochemical studies and the structures of the Fab58:HGFA (3.5-Å resolution) and the Fab75:HGFA (2.2-Å resolution) complexes revealed that Ab58 obstructed substrate access to the active site, whereas Ab75 allosterically inhibited substrate hydrolysis. In both cases, the antibodies interacted with the same protruding element (99-loop), which forms part of the substrate-binding cleft. Ab58 inserted its H1 and H2 loops in the cleft to occupy important substrate interaction sites (S3 and S2). In contrast, Ab75 bound at the backside of the cleft to a region corresponding to thrombin exosite II, which is known to interact with allosteric effector molecules. In agreement with the structural analysis, binding assays with active site inhibitors and enzymatic assays showed that Ab58 is a competitive inhibitor, and Ab75 is a partial competitive inhibitor. These results provide structural insight into antibody-mediated protease inhibition. They suggest that unlike canonical inhibitors, antibodies may preferentially target protruding loops at the rim of the substrate-binding cleft to interfere with the catalytic machinery of proteases without requiring long insertion loops.

Collaboration


Dive into the Scott Stawicki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongmei Chen

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Alexander W. Koch

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge