Joel Anne Chasis
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joel Anne Chasis.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Ke Chen; Jing Liu; Susanne Heck; Joel Anne Chasis; Xiuli An; Narla Mohandas
Erythropoiesis is the process by which nucleated erythroid progenitors proliferate and differentiate to generate, every second, millions of nonnucleated red cells with their unique discoid shape and membrane material properties. Here we examined the time course of appearance of individual membrane protein components during murine erythropoiesis to throw new light on our understanding of the evolution of the unique features of the red cell membrane. We found that the accumulation of all of the major transmembrane and all skeletal proteins of the mature red blood cell, except actin, accrued progressively during terminal erythroid differentiation. At the same time, and in marked contrast, accumulation of various adhesion molecules decreased. In particular, the adhesion molecule, CD44 exhibited a progressive and dramatic decrease from proerythroblast to reticulocyte; this enabled us to devise a new strategy for distinguishing unambiguously between erythroblasts at successive developmental stages. These findings provide unique insights into the genesis of red cell membrane function during erythroblast differentiation and also offer a means of defining stage-specific defects in erythroid maturation in inherited and acquired red cell disorders and in bone marrow failure syndromes.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Marcela Salomao; Xihui Zhang; Yang Yang; Soohee Lee; John H. Hartwig; Joel Anne Chasis; Narla Mohandas; Xiuli An
Protein 4.1R (4.1R) is a multifunctional component of the red cell membrane. It forms a ternary complex with actin and spectrin, which defines the nodal junctions of the membrane-skeletal network, and its attachment to the transmembrane protein glycophorin C creates a bridge between the protein network and the membrane bilayer. We now show that deletion of 4.1R in mouse red cells leads to a large diminution of actin accompanied by extensive loss of cytoskeletal lattice structure, with formation of bare areas of membrane. Whereas band 3, the preponderant transmembrane constituent, and proteins known to be associated with it are present in normal or increased amounts, glycophorin C is missing and XK, Duffy, and Rh are much reduced in the 4.1R-deficient cells. The inference that these are associated with 4.1R was borne out by the results of in vitro pull-down assays. Furthermore, whereas Western blot analysis showed normal levels of band 3 and Kell, flow cytometric analysis using an antibody against the extracellular region of band 3 or Kell revealed reduction of these two proteins, suggesting a conformational change of band 3 and Kell epitopes. Taken together, we suggest that 4.1R organizes a macromolecular complex of skeletal and transmembrane proteins at the junctional node and that perturbation of this macromolecular complex not only is responsible for the well characterized membrane instability but may also remodel the red cell surface.
Journal of Clinical Investigation | 1992
Narla Mohandas; R Winardi; D Knowles; A Leung; M Parra; E George; John G. Conboy; Joel Anne Chasis
Hereditary ovalocytic red cells are characterized by a marked increase in membrane rigidity and resistance to invasion by malarial parasites. The underlying molecular defect in ovalocytes remained a mystery until Liu and colleagues (N. Engl. J. Med. 1990. 323:1530-38) made the surprising observation that the ovalocytic phenotype was linked to a structural polymorphism in band 3, the anion transporter. We have now defined the mutation in band 3 gene and established the biophysical sequelae of this mutation. This mutation involves the deletion of amino-acids 400-408 in the boundary between the cytoplasmic and the first transmembrane domains of band 3. The biophysical consequences of this mutation are a marked decrease in lateral mobility of band 3 and an increase in membrane rigidity. Based on these findings, we propose the following model for increased membrane rigidity. The mutation induces a conformational change in the cytoplasmic domain of band 3, leading to its entanglement in the skeletal protein network. This entanglement inhibits the normal unwinding and stretching of the spectrin tetramers necessary for membrane extension, leading to increased rigidity. These findings imply that the cytoplasmic domain of an integral membrane protein can have profound effects on membrane material behavior.
Journal of Clinical Investigation | 1999
Zheng-Tao Shi; Veena Afzal; Barry S. Coller; Dipti Patel; Joel Anne Chasis; Marilyn Parra; Gloria Lee; Chris Paszty; Mary E. Stevens; Loren D. Walensky; Luanne L. Peters; Narla Mohandas; Edward M. Rubin; John G. Conboy
A diverse family of protein 4.1R isoforms is encoded by a complex gene on human chromosome 1. Although the prototypical 80-kDa 4.1R in mature erythrocytes is a key component of the erythroid membrane skeleton that regulates erythrocyte morphology and mechanical stability, little is known about 4.1R function in nucleated cells. Using gene knockout technology, we have generated mice with complete deficiency of all 4.1R protein isoforms. These 4.1R-null mice were viable, with moderate hemolytic anemia but no gross abnormalities. Erythrocytes from these mice exhibited abnormal morphology, lowered membrane stability, and reduced expression of other skeletal proteins including spectrin and ankyrin, suggesting that loss of 4. 1R compromises membrane skeleton assembly in erythroid progenitors. Platelet morphology and function were essentially normal, indicating that 4.1R deficiency may have less impact on other hematopoietic lineages. Nonerythroid 4.1R expression patterns, viewed using histochemical staining for lacZ reporter activity incorporated into the targeted gene, revealed focal expression in specific neurons in the brain and in select cells of other major organs, challenging the view that 4.1R expression is widespread among nonerythroid cells. The 4.1R knockout mice represent a valuable animal model for exploring 4.1R function in nonerythroid cells and for determining pathophysiological sequelae to 4.1R deficiency.
Blood | 2010
Jing Liu; Xinhua Guo; Narla Mohandas; Joel Anne Chasis; Xiuli An
The transition of reticulocytes into erythrocytes is accompanied by extensive changes in the structure and properties of the plasma membrane. These changes include an increase in shear resistance, loss of surface area, and acquisition of a biconcave shape. The processes by which these changes are effected have remained largely undefined. Here we examine how the expression of 30 distinct membrane proteins and their interactions change during murine reticulocyte maturation. We show that tubulin and cytosolic actin are lost, whereas the membrane content of myosin, tropomyosin, intercellular adhesion molecule-4, glucose transporter-4, Na-K-ATPase, sodium/hydrogen exchanger 1, glycophorin A, CD47, Duffy, and Kell is reduced. The degradation of tubulin and actin is, at least in part, through the ubiquitin-proteasome degradation pathway. In regard to the protein-protein interactions, the formation of membrane-associated spectrin tetramers from dimers is unperturbed, whereas the interactions responsible for the formation of the membrane-skeletal junctions are weaker in reticulocytes, as is the attachment of transmembrane proteins to these structures. This weakness, in part, results from the elevated phosphorylation of 4.1R in reticulocytes, which leads to a decrease in shear resistance by reducing its interaction with spectrin and actin. These observations begin to unravel the mechanistic basis of crucial changes accompanying reticulocyte maturation.
Blood | 2013
Jingping Hu; Jing Liu; Fumin Xue; Gregory R. Halverson; Marion E. Reid; Anqi Guo; Lixiang Chen; Azra Raza; Naomi Galili; Julie Jaffray; Joseph M. Lane; Joel Anne Chasis; Naomi Taylor; Narla Mohandas; Xiuli An
Terminal erythroid differentiation starts from morphologically recognizable proerythroblasts that proliferate and differentiate to generate red cells. Although this process has been extensively studied in mice, its characterization in humans is limited. By examining the dynamic changes of expression of membrane proteins during in vitro human terminal erythroid differentiation, we identified band 3 and α4 integrin as optimal surface markers for isolating 5 morphologically distinct populations at successive developmental stages. Functional analysis revealed that these purified cell populations have distinct mitotic capacity. Use of band 3 and α4 integrin enabled us to isolate erythroblasts at specific developmental stages from primary human bone marrow. The ratio of erythroblasts at successive stages followed the predicted 1:2:4:8:16 pattern. In contrast, bone marrows from myelodysplastic syndrome patients exhibited altered terminal erythroid differentiation profiles. Thus, our findings not only provide new insights into the genesis of the red cell membrane during human terminal erythroid differentiation but also offer a means of isolating and quantifying each developmental stage during terminal erythropoiesis in vivo. Our findings should facilitate a comprehensive cellular and molecular characterization of each specific developmental stage of human erythroblasts and should provide a powerful means of identifying stage-specific defects in diseases associated with pathological erythropoiesis.
Journal of Biological Chemistry | 2006
Julie L. Ponthier; Christina Schluepen; Weiguo Chen; Robert A. Lersch; Sherry L. Gee; Victor C. Hou; Annie J. Lo; Sarah A. Short; Joel Anne Chasis; John C. Winkelmann; John G. Conboy
Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins to silencer elements in the exon and that down-regulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This article demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.
Blood | 2013
Jing Liu; Jianhua Zhang; Yelena Ginzburg; Huihui Li; Fumin Xue; Lucia De Franceschi; Joel Anne Chasis; Narla Mohandas; Xiuli An
Terminal erythroid differentiation is the process during which proerythroblasts differentiate to produce enucleated reticulocytes. Although it is well established that during murine erythropoiesis in vivo, 1 proerythroblast undergoes 3 mitosis to generate sequentially 2 basophilic, 4 polychromatic, and 8 orthochromatic erythroblasts, currently there is no method to quantitatively monitor this highly regulated process. Here we outline a method that distinguishes each distinct stage of erythroid differentiation in cells from mouse bone marrow and spleen based on expression levels of TER119, CD44, and cell size. Quantitative analysis revealed that the ratio of proerythroblasts:basophilic:polychromatic:orthromatic erythroblasts follows the expected 1:2:4:8 ratio, reflecting the physiologic progression of terminal erythroid differentiation in normal mice. Moreover, in 2 stress erythropoiesis mouse models, phlebotomy-induced acute anemia and chronic hemolytic anemia because of 4.1R deficiency, the ratio of these erythroblast populations remains the same as that of wild-type bone marrow. In contrast, in anemic β-thalassemia intermedia mice, there is altered progression which is restored to normal by transferrin treatment which was previously shown to ameliorate the anemic phenotype. The means to quantitate in vivo murine erythropoiesis using our approach will probably have broad application in the study of altered erythropoiesis in various red cell disorders.
Journal of Biological Chemistry | 2002
Xiuli An; M. Christine Lecomte; Joel Anne Chasis; Narla Mohandas; Walter Gratzer
The red cell membrane derives its elasticity and resistance to mechanical stresses from the membrane skeleton, a network composed of spectrin tetramers. These are formed by the head-to-head association of pairs of heterodimers attached at their ends to junctional complexes of several proteins. Here we examine the dynamics of the spectrin dimer-dimer association in the intact membrane. We show that univalent fragments of spectrin, containing the dimer self-association site, will bind to spectrin on the membrane and thereby disrupt the continuity of the protein network. This results in impairment of the mechanical stability of the membrane. When, moreover, the cells are subjected to a continuous low level of shear, even at room temperature, the incorporation of the fragments and the consequent destabilization of the membrane are greatly accentuated. It follows that a modest shearing force, well below that experienced by the red cell in the circulation, is sufficient to sever dimer-dimer links in the network. Our results imply 1) that the membrane accommodates the enormous distortions imposed on it during the passage of the cell through the microvasculature by means of local dissociation of spectrin tetramers to dimers, 2) that the network in situ is in a dynamic state and undergoes a “breathing” action of tetramer dissociation and re-formation.
Current Opinion in Hematology | 2006
Joel Anne Chasis
Purpose of reviewThis review focuses on current understanding of molecular mechanisms operating within erythroblastic islands including cell–cell adhesion, regulatory feedback, and central macrophage function. Recent findingsErythroblasts express a variety of adhesion molecules and recently two interactions have been identified that appear to be critical for island integrity. Erythroblast macrophage protein, expressed on erythroblasts and macrophages, mediates cell–cell attachments via homophilic binding. Erythroblast intercellular adhesion molecule-4 links erythroblasts to macrophages through interaction with macrophage αv integrin. In intercellular adhesion molecule-4 knockout mice, erythroblastic islands are markedly reduced, whereas the erythroblast macrophage protein null phenotype is severely anemic and embryonic lethal. Retinoblastoma tumor suppressor (Rb) protein stimulates macrophage differentiation by counteracting inhibition of Id2 on PU.1, a transcription factor that is a crucial regulator of macrophage differentiation. Rb-deficient macrophages do not bind Rb null erythroblasts and the Rb null phenotype is anemic and embryonic lethal. Lastly, extruded nuclei rapidly expose phosphatidylserine on their surface, providing a recognition signal similar to apoptotic cells. SummaryAlthough understanding of molecular mechanisms operating within islands is at an early stage, tantalizing evidence suggests that erythroblastic islands are specialized niches where intercellular interactions in concert with cytokines play critical roles in regulating erythropoiesis.