Sharon Wald Krauss
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sharon Wald Krauss.
Journal of Biological Chemistry | 1997
Wataru Nunomura; Yuichi Takakuwa; Reiko Tokimitsu; Sharon Wald Krauss; Makoto Kawashima; Narla Mohandas
Erythrocyte membrane skeletal protein 4.1 isoforms have been identified in a variety of non-erythroid cells. However, interactions between protein 4.1 and its binding partners in non-erythroid cell membranes are poorly understood. In the erythrocyte membrane, protein 4.1 binds to the cytoplasmic domain of band 3 and, through this interaction, modulates ankyrin binding to band 3. The sequences LRRRY or IRRRY in band 3 mediate the interaction between band 3 and protein 4.1. The cytoplasmic domain of CD44, a transmembrane glycoprotein found in erythroid as well as non-erythroid cells, has internal sequences SRRRC and QKKKL. We wanted to determine if protein 4.1 binds to CD44 in a fashion analogous to its binding to band 3 and through this interaction modulates ankyrin binding to CD44. We report here that protein 4.1 binds to the cytoplasmic domain of CD44 with a dissociation constant on the order of 10−7 m and that Ca2+ and calmodulin reduce the affinity of this interaction. Furthermore, although independent binding of both protein 4.1 and ankyrin to CD44 could be documented, binding of protein 4.1 prevented subsequent ankyrin binding. These studies have enabled us to identify a potentially important functional role for protein 4.1 in modulating ankyrin binding to CD44.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Sharon Wald Krauss; Cynthia Chen; Sheldon Penman; Rebecca Heald
Structural protein 4.1, which has crucial interactions within the spectrin–actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher-resolution detergent-extracted cell whole-mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under nonperturbing conditions, the total nuclear actin population is retained and visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As nuclear lamina assembled, but preceding DNA synthesis, actin distributed in a reticulated pattern throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1–actin interactions may be critical.
Chromosome Research | 2009
Evgenya Y. Popova; Sharon Wald Krauss; Sarah A. Short; Gloria Lee; Jonathan Villalobos; Joan Etzell; Mark J. Koury; Paul A. Ney; Joel Anne Chasis; Sergei A. Grigoryev
Terminal erythroid differentiation in vertebrates is characterized by progressive heterochromatin formation and chromatin condensation and, in mammals, culminates in nuclear extrusion. To date, although mechanisms regulating avian erythroid chromatin condensation have been identified, little is known regarding this process during mammalian erythropoiesis. To elucidate the molecular basis for mammalian erythroblast chromatin condensation, we used Friend virus-infected murine spleen erythroblasts that undergo terminal differentiation in vitro. Chromatin isolated from early and late-stage erythroblasts had similar levels of linker and core histones, only a slight difference in nucleosome repeats, and no significant accumulation of known developmentally regulated architectural chromatin proteins. However, histone H3(K9) dimethylation markedly increased while histone H4(K12) acetylation dramatically decreased and became segregated from the histone methylation as chromatin condensed. One histone deacetylase, HDAC5, was significantly upregulated during the terminal stages of Friend virus-infected erythroblast differentiation. Treatment with histone deacetylase inhibitor, trichostatin A, blocked both chromatin condensation and nuclear extrusion. Based on our data, we propose a model for a unique mechanism in which extensive histone deacetylation at pericentromeric heterochromatin mediates heterochromatin condensation in vertebrate erythroblasts that would otherwise be mediated by developmentally-regulated architectural proteins in nucleated blood cells.
The Journal of Neuroscience | 1997
Pascale David; Edna Efrati; Georges Tocco; Sharon Wald Krauss; Myron F. Goodman
DNA synthesis and postreplication mismatch repair were measuredin vitro using cell-free extracts from cultured human SY5Y neuroblastoma and WI38 fibroblast cells in different growth states. All extracts, including differentiated SY5Y and quiescent WI38 fibroblasts, catalyzed SV40 origin-dependent DNA synthesis, totally dependent on SV40 T-antigen. Thus, although differentiated neuroblastoma and quiescent fibroblasts cells were essentially nondividing, their extracts were competent for DNA replication using DNA polymerases δ, α, and possibly ε, with proliferating cell nuclear antigen. Nonreplicative DNA synthesis and lesion bypass by either α- or β-polymerases were detected independently in extracts using primed or gapped single-stranded DNA templates. Long-patch postreplication mismatch repair was measured for the first time in neuroblastoma cell-free extracts. Extracts from subconfluent and high-density SY5Y cells catalyzed postreplication mismatch repair with efficiencies comparable to those of HeLa cell extracts. No significant differences were observed in repair between SY5Y differentiated and undifferentiated cell extracts. Mismatch repair efficiencies were threefold lower in extracts from subconfluent WI38 cells, and repair in WI38 quiescent cells was fourfold less than in subconfluent cells, suggesting that mismatch repair may be regulated. The spectrum of mismatch repair in SY5Y extracts closely resembled the mismatch removal specificities of HeLa extracts: T · G and G · G mismatches were repaired most efficiently; C · A, A · A, A · G and a five-base loop were repaired with intermediate efficiency; repair of G · A, C · C, and T · T mismatches was extremely inefficient.
Journal of Cell Science | 2011
Adam J. Meyer; Donna K. Almendrala; Minjoung M. Go; Sharon Wald Krauss
The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that 4.1R-specific depletion in human cells by RNA interference produces nuclear dysmorphology and selective mislocalization of proteins from several nuclear subcompartments. Such 4.1R-deficiency causes emerin to partially redistribute into the cytoplasm, whereas lamin A/C is disorganized at nuclear rims and displaced from nucleoplasmic foci. The nuclear envelope protein MAN1, nuclear pore proteins Tpr and Nup62, and nucleoplasmic proteins NuMA and LAP2α also have aberrant distributions, but lamin B and LAP2β have normal localizations. 4.1R-deficient mouse embryonic fibroblasts show a similar phenotype. We determined the functional effects of 4.1R-deficiency that reflect disruption of the association of 4.1R with emerin and A-type lamin: increased nucleus–centrosome distances, increased β-catenin signaling, and relocalization of β-catenin from the plasma membrane to the nucleus. Furthermore, emerin- and lamin-A/C-null cells have decreased nuclear 4.1R. Our data provide evidence that 4.1R has important functional interactions with emerin and A-type lamin that impact upon nuclear architecture, centrosome–nuclear envelope association and the regulation of β-catenin transcriptional co-activator activity that is dependent on β-catenin nuclear export.
Journal of Cell Biology | 1997
Sharon Wald Krauss; Carolyn A. Larabell; Stephen Lockett; Philippe Gascard; Sheldon Penman; Narla Mohandas; Joel Anne Chasis
Blood | 2004
Jimmy Lee; J. Aura Gimm; Annie J. Lo; Mark J. Koury; Sharon Wald Krauss; Narla Mohandas; Joel Anne Chasis
Proceedings of the National Academy of Sciences of the United States of America | 1997
Sharon Wald Krauss; Joel Anne Chasis; Catherine Rogers; Narla Mohandas; Gabriela Krockmalnic; Sheldon Penman
Blood | 2005
Sharon Wald Krauss; Annie J. Lo; Sarah A. Short; Mark J. Koury; Narla Mohandas; Joel Anne Chasis
Molecular Biology of the Cell | 1999
Philippe Gascard; Wataru Nunomura; Gloria Lee; Loren D. Walensky; Sharon Wald Krauss; Yuichi Takakuwa; Joel Anne Chasis; Narla Mohandas; John G. Conboy