Joel Marh
University of Hawaii at Manoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joel Marh.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Yukiko Yamazaki; Mellissa R.W. Mann; Susan S. Lee; Joel Marh; John R. McCarrey; Ryuzo Yanagimachi; Marisa S. Bartolomei
Germ cells undergo epigenetic modifications as they develop, which suggests that they may be ideal donors for nuclear transfer (cloning). In this study, nuclei from confirmed embryonic germ cells were used as donors to determine whether they are competent for cloning and at which stage they are most competent. Embryos cloned from migrating 10.5-days-postcoitum (dpc) primordial germ cells (PGCs) showed normal morphological development to midgestation but died shortly thereafter. In contrast, embryos cloned from later-stage germ cells were developmentally delayed at midgestation. Thus, donor germ cell age inversely correlated with the developmental stage attained by cloned embryos. The methylation status of the H19- and Snrpn-imprinting control regions in germ cell clones paralleled that of the donors, and revealed that demethylation, or erasure of imprints, was already initiated in PGCs at 10.5 dpc and was complete by 13.5 dpc. Similarly, clones derived from male 15.5-dpc germ cells showed increased methylation correlating with the initiation of de novo methylation that resets imprints at this stage, and clones from neonatal germ cells showed nearly complete methylation in the H19 imprinting control region. These results indicate that the epigenetic state of the donor nucleus is retained in cloned embryos, and that germ cells are therefore inadequate nuclear donors for cloning because they are either erasing or resetting epigenetic patterns.
Genes to Cells | 2004
Jun Ohgane; Teruhiko Wakayama; Sho Senda; Yukiko Yamazaki; Kimiko Inoue; Atsuo Ogura; Joel Marh; Satoshi Tanaka; Ryuzo Yanagimachi; Kunio Shiota
DNA methylation controls various developmental processes by silencing, switching and stabilizing genes as well as remodeling chromatin. Among various symptoms in cloned animals, placental hypertrophy is commonly observed. We identified the Spalt‐like gene3 (Sall3) locus as a hypermethylated region in the placental genome of cloned mice. The Sall3 locus has a CpG island containing a tissue‐dependent differentially methylated region (T‐DMR) specific to the trophoblast cell lineage. The T‐DMR sequence is also conserved in the human genome at the SALL3 locus of chromosome 18q23, which has been suggested to be involved in the 18q deletion syndrome. Intriguingly, larger placentas were more heavily methylated at the Sall3 locus in cloned mice. This epigenetic error was found in all cloned mice examined regardless of sex, mouse strain and the type of donor cells. In contrast, the placentas of in vitro fertilized (IVF) and intracytoplasmic sperm injected (ICSI) mice did not show such hypermethylation, suggesting that aberrant hypermethylation at the Sall3 locus is associated with abnormal placental development caused by nuclear transfer of somatic cells. We concluded that the Sall3 locus is the area with frequent epigenetic errors in cloned mice. These data suggest that there exists at least genetic locus that is highly susceptible to epigenetic error caused by nuclear transfer.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Johann Urschitz; Miyuri Kawasumi; Jesse B. Owens; Kazuto Morozumi; Hideaki Yamashiro; Ilko Stoytchev; Joel Marh; James A. Dee; Kris Kawamoto; Craig J. Coates; Joseph M. Kaminski; Pawel Pelczar; Ryuzo Yanagimachi; Stefan Moisyadi
Efficient integration of functional genes is an essential prerequisite for successful gene delivery such as cell transfection, animal transgenesis, and gene therapy. Gene delivery strategies based on viral vectors are currently the most efficient. However, limited cargo capacity, host immune response, and the risk of insertional mutagenesis are limiting factors and of concern. Recently, several groups have used transposon-based approaches to deliver genes to a variety of cells. The piggyBac (pB) transposase in particular has been shown to be well suited for cell transfection and gene therapy approaches because of its flexibility for molecular modification, large cargo capacity, and high transposition activity. However, safety considerations regarding transposase gene insertions into host genomes have rarely been addressed. Here we report our results on engineering helper-independent pB plasmids. The single-plasmid gene delivery system carries both the piggyBac transposase (pBt) expression cassette as well as the transposon cargo flanked by terminal repeat element sequences. Improvements to the helper-independent structure were achieved by developing new plasmids in which the pBt gene is rendered inactive after excision of the transposon from the plasmid. As a consequence, potentially negative effects that may develop by the persistence of an active pBt gene posttransposition are eliminated. The results presented herein demonstrate that our helper-independent plasmids represent an important step in the development of safe and efficient gene delivery methods that should prove valuable in gene therapy and transgenic approaches.
PLOS ONE | 2013
Joanna E. Gawecka; Joel Marh; Michael A. Ortega; Yasuhiro Yamauchi; Monika A. Ward; W. Steven Ward
Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF). SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B) followed by irreversible DNA degradation by a nuclease(s). Here, we created zygotes using spermatozoa induced to undergo SCF (SCF zygotes) and tested how they responded to moderate and severe paternal DNA damage during the first cell cycle. We found that the TUNEL assay was not sensitive enough to identify the breaks caused by SCF in zygotes in either case. However, paternal pronuclei in both groups stained positively for γH2AX, a marker for DNA damage, at 5 hrs after fertilization, just before DNA synthesis, while the maternal pronuclei were negative. We also found that both pronuclei in SCF zygotes with moderate DNA damage replicated normally, but paternal pronuclei in the SCF zygotes with severe DNA damage delayed the initiation of DNA replication by up to 12 hrs even though the maternal pronuclei had no discernable delay. Chromosomal analysis of both groups confirmed that the paternal DNA was degraded after S-phase while the maternal pronuclei formed normal chromosomes. The DNA replication delay caused a marked retardation in progression to the 2-cell stage, and a large portion of the embryos arrested at the G2/M border, suggesting that this is an important checkpoint in zygotic development. Those embryos that progressed through the G2/M border died at later stages and none developed to the blastocyst stage. Our data demonstrate that the zygote responds to sperm DNA damage through a non-apoptotic mechanism that acts by slowing paternal DNA replication and ultimately leads to arrest in embryonic development.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Joel Marh; Zoia Stoytcheva; Johann Urschitz; Atsushi Sugawara; Hideaki Yamashiro; Jesse B. Owens; Ilko Stoytchev; Pawel Pelczar; Ryuzo Yanagimachi; Stefan Moisyadi
We have developed a unique method for mouse transgenesis. The transposase-enhanced pronuclear microinjection (PNI) technique described herein uses the hyperactive piggyBac transposase to insert a large transgene into the mouse genome. This procedure increased transgene integration efficiency by fivefold compared with conventional PNI or intracytoplasmic sperm injection-mediated transgenesis. Our data indicate that the transposase-enhanced PNI technique additionally requires fewer embryos to be microinjected than traditional methods to obtain transgenic animals. This transposase-mediated approach is also very efficient for single-cell embryo cytoplasmic injections, offering an easy-to-implement transgenesis method to the scientific community.
American Journal of Pathology | 2017
Viola Pomozi; Christopher Brampton; Koen van de Wetering; Janna Zoll; Bianca Calio; Kevin Pham; Jesse B. Owens; Joel Marh; Stefan Moisyadi; András Váradi; Ludovic Martin; Carolin Bauer; Jeanette Erdmann; Zouhair Aherrahrou; Olivier Le Saux
Soft tissue calcification occurs in several common acquired pathologies, such as diabetes and hypercholesterolemia, or can result from genetic disorders. ABCC6, a transmembrane transporter primarily expressed in liver and kidneys, initiates a molecular pathway inhibiting ectopic calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into pyrophosphate (PPi), a major calcification inhibitor. Heritable mutations in ABCC6 underlie the incurable calcification disorder pseudoxanthoma elasticum and some cases of generalized arterial calcification of infancy. Herein, we determined that the administration of PPi and the bisphosphonate etidronate to Abcc6-/- mice fully inhibited the acute dystrophic cardiac calcification phenotype, whereas alendronate had no significant effect. We also found that daily injection of PPi to Abcc6-/- mice over several months prevented the development of pseudoxanthoma elasticum-like spontaneous calcification, but failed to reverse already established lesions. Furthermore, we found that the expression of low amounts of the human ABCC6 in liver of transgenic Abcc6-/- mice, resulting in only a 27% increase in plasma PPi levels, led to a major reduction in acute and chronic calcification phenotypes. This proof-of-concept study shows that the development of both acute and chronic calcification associated with ABCC6 deficiency can be prevented by compensating PPi deficits, even partially. Our work indicates that PPi substitution represents a promising strategy to treat ABCC6-dependent calcification disorders.
Journal of Cellular Biochemistry | 2015
Hieu Nguyen; Michael A. Ortega; Myungjun Ko; Joel Marh; W. Steven Ward
Six proteins, ORC1–6, make up the origin recognition complex (ORC) that initiates licensing of DNA replication origins. We have previously reported that subunit ORC2 is localized between the separating maternal chromosomes at anaphase II just after fertilization and is present in zygotic pronuclei at G1. Here, we found that ORC1, 3, and 5 all localize between the chromosomes at anaphase II, but could not be detected in zygotic G1. ORC6 localized to the periphery of the nucleoli at all zygotic stages. We identified an unexpected potential role for ORC4 in polar body formation. We found that in both female meiotic divisions, ORC4 surrounds the set of chromosomes, as a sphere‐like structure, that will eventually be discarded in the polar bodies, but not the chromosomes that segregate into the oocyte. None of the other five ORC proteins are involved in this structure. In Zygotic G1, ORC4 surrounds the nuclei of the polar bodies, but was not detectable in the pronuclei. When the zygote entered mitosis ORC4 was only detected in the polar body. However, ORC4 appeared on both sets of separating chromosomes at telophase. At this point, the ORC4 that was in the polar body also migrated into the nuclei, suggesting that ORC4 or an associated protein is modified during the first embryonic cell cycle to allow it to bind DNA. Our results suggest that ORC4 may help identify the chromosomes that are destined to be expelled in the polar body, and may play a role in polar body extrusion. ORC4 surrounds the chromatin that will be extruded in the polar body in both female meiotic divisions, then makes a transition from the cytoplasm to the chromosomes at zygotic anaphase, suggesting multiple roles for this replication licensing protein. J. Cell. Biochem. 116: 778–786, 2015.
Biology of Reproduction | 2012
Michael A. Ortega; Joel Marh; Vernadeth B. Alarcon; W. Steven Ward
ABSTRACT In eukaryotes, DNA synthesis is preceded by licensing of replication origins. We examined the subcellular localization of two licensing proteins, ORC2 and MCM7, in the mouse zygotes and two-cell embryos. In somatic cells ORC2 remains bound to DNA replication origins throughout the cell cycle, while MCM7 is one of the last proteins to bind to the licensing complex. We found that MCM7 but not ORC2 was bound to DNA in metaphase II oocytes and remained associated with the DNA until S-phase. Shortly after fertilization, ORC2 was detectable at the metaphase II spindle poles and then between the separating chromosomes. Neither protein was present in the sperm cell at fertilization. As the sperm head decondensed, MCM7 was bound to DNA, but no ORC2 was seen. By 4 h after fertilization, both pronuclei contained DNA bound ORC2 and MCM7. As expected, during S-phase of the first zygotic cell cycle, MCM7 was released from the DNA, but ORC2 remained bound. During zygotic mitosis, ORC2 again localized first to the spindle poles, then to the area between the separating chromosomes. ORC2 then formed a ring around the developing two-cell nuclei before entering the nucleus. Only soluble MCM7 was present in the G2 pronuclei, but by zygotic metaphase it was bound to DNA, again apparently before ORC2. In G1 of the two-cell stage, both nuclei had salt-resistant ORC2 and MCM7. These data suggest that licensing follows a unique pattern in the early zygote that differs from what has been described for other mammalian cells that have been studied.
Journal of Cellular Biochemistry | 2016
Michael A. Ortega; Myungjun Ko; Joel Marh; Ariel Finberg; Marissa Oshiro; W. Steven Ward
After fertilization, the maternal and paternal chromosomes independently proceed through pronuclear formation. These chromatin reconfigurations occur within a shared cytoplasm thus exposing both gametes to the same factors. Here, we report that continuous cycloheximide [40 μg/mL] treatment of parthenogenotes, androgenotes, and ICSI embryos reveals ORC2 pronuclear instability in the maternal (MPN) but not the paternal pronucleus (PPN). When released from CHX after 8 h, the MPN can recover ORC2 and proceed through replication, however, parthenogenotes encounter severe mitotic defects while both ICSI embryos and androgenotes are able to recover and develop at significantly higher rates. Taken together, these data suggest cycloheximide treatment promotes an environment that asymmetrically affects the stability of ORC2 on the MPN, and the ability of the MPN to develop. Furthermore, the presence of the PPN in the zygote can ameliorate both effects. These data suggest further evidence for crosstalk between the two pronuclei during the first cell cycle of the embryo. J. Cell. Biochem. 117: 1806–1812, 2016.
Placenta | 2017
Marlee Elston; Kainalu Matthews; Joel Marh; Haide Razavy; Johann Urschitz