Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joël Renaudin is active.

Publication


Featured researches published by Joël Renaudin.


Current Microbiology | 1994

Cloning and sequencing of the replication origin (oriC) of the Spiroplasma citri chromosome and construction of autonomously replicating artificial plasmids.

Fengchun Ye; Joël Renaudin; Joseph M. Bové; Frédéric Laigret

A 5.6-kbp fragment ofSpiroplasma citri DNA containing thednaA gene has been cloned and sequenced. Nucleotide sequence analysis shows that this fragment harbors the genes for the replication initiator protein (dnaA), the beta subunit of DNA polymerase III (dnaN), and the DNA gyrase subunits A and B (gyrA andgyrB). The arrangement of these genes,dnaA-dnaN-gyrB-gyrA, is similar to that found in all Gram-positive bacterial genomes studied so far, except that norecF gene was found betweendnaN andgyrB. Several DnaA-box consensus sequences were found upstream ofdnaA and in thednaA-dnaN intergenic region. ThednaA region with the flanking DnaA-boxes and the tetracycline resistance determinant,tetM, were linked into a circular recombinant DNA. This DNA was able to replicate autonomously when introduced by electroporation intoS. citri cells. These experiments show that thednaA region with the DnaA-boxes is the origin of replication ofS. citri and can be used to construct gene vectors.


Current Microbiology | 1993

The genome of the non-cultured, bacterial-like organism associated with citrus greening disease contains the nusG-rplKAJL-rpoBC gene cluster and the gene for a bacteriophage type DNA polymerase.

Sandrine Villechanoux; M. Garnier; Frédéric Laigret; Joël Renaudin; Joseph M. Bové

We have recently cloned three DNA fragments (In-2.6, In-1.0, and In-0.6) of the noncultured, bacterial-like organism (BLO) associated with citrus greening disease. Nucleotide sequence determination has shown that fragment In-2.6 is part of therplKAJL-rpoBC gene cluster, a well-known operon in eubacteria. The DNA fragment upstream of and partially overlapping with In-2.6 could be isolated and was shown to be thenusG gene. InEscherichia coli, nusG is also immediately upstream ofrplKAJL-rpoBC. Fragment In-1.0 carries the gene for a bacteriophage type DNA polymerase. Fragment In-0.6 could not be identified.When In-2.6 was used, at high stringency, as a probe to detect greening BLO strains in infected plants, hybridization was obtained with all Asian strains tested, but not with the African strain examined. At lower stringencies, In-2.6 was able to detect also the African strain. The implications of these reults in the taxonomical position of the greening BLO are discussed.


Current Microbiology | 1992

Detection of several strains of the bacterium-like organism of citrus greening disease by DNA probes

Sandrine Villechanoux; M. Garnier; Joël Renaudin; Joseph M. Bové

Greening disease of citrus is caused by a phloem-restricted, bacterium-like organism (BLO). DNA was purified from phloem tissue of periwinkle plants infected with an indian strain of the greening BLO, restricted withHindIII endonuclease, and cloned in the replicative form of bacteriophage M13mp18.By differential hybrizations involving DNA from healthy and infected periwinkle plants, we have selected three recombinant phages containing BLO DNA. The BLO DNA inserts (In-2.6, In-1.9, and In-0.6) have been purified from the viral replicative forms and used as probes. Southern and dot hybridizations have shown that In-2.6 and In-1.9 recognized all asian strains tested (strains from India, Thailand, the Philippines, Indonesia, China, and Taiwan), but not a South African strain. In-0.6 reacted only with the indian BLO strain.


Applied and Environmental Microbiology | 2005

Diversity of “Candidatus Liberibacter asiaticus,” Based on the omp Gene Sequence

C. Bastianel; M. Garnier-Semancik; Joël Renaudin; Joseph M. Bové; Sandrine Eveillard

ABSTRACT Huanglongbing (yellow dragon disease) is a destructive disease of citrus. The etiological agent is a noncultured, phloem-restricted alpha-proteobacterium, “Candidatus Liberibacter africanus” in Africa and “Candidatus Liberibacter asiaticus” in Asia. In this study, we used an omp-based PCR-restriction fragment length polymorphism (RFLP) approach to analyze the genetic variability of “Ca. Liberibacter asiaticus” isolates. By using five different enzymes, each the 10 isolates tested could be associated with a specific combination of restriction profiles. The results indicate that the species “Ca. Liberibacter asiaticus,” even within a given region, may comprise several different variants. Thus, omp-based PCR-RFLP analysis is a simple method for detecting and differentiating “Ca. Liberibacter asiaticus” isolates.


Journal of Bacteriology | 2002

Identification of the Origin of Replication of the Mycoplasma pulmonis Chromosome and Its Use in oriC Replicative Plasmids

Caio Mauricio Mendes de Cordova; Carole Lartigue; Pascal Sirand-Pugnet; Joël Renaudin; Regina Ayr Florio da Cunha; Alain Blanchard

Mycoplasma pulmonis is a natural rodent pathogen, considered a privileged model for studying respiratory mycoplasmosis. The complete genome of this bacterium, which belongs to the class Mollicutes, has recently been sequenced, but studying the role of specific genes requires improved genetic tools. In silico comparative analysis of sequenced mollicute genomes indicated the lack of conservation of gene order in the region containing the predicted origin of replication (oriC) and the existence, in most of the mollicute genomes examined, of putative DnaA boxes lying upstream and downstream from the dnaA gene. The predicted M. pulmonis oriC region was shown to be functional after cloning it into an artificial plasmid and after transformation of the mycoplasma, which was obtained with a frequency of 3 x 10(-6) transformants/CFU/ micro g of plasmid DNA. However, after a few in vitro passages, this plasmid integrated into the chromosomal oriC region. Reduction of this oriC region by subcloning experiments to the region either upstream or downstream from dnaA resulted in plasmids that failed to replicate in M. pulmonis, except when these two intergenic regions were cloned with the tetM determinant as a spacer in between them. An internal fragment of the M. pulmonis hemolysin A gene (hlyA) was cloned into this oriC plasmid, and the resulting construct was used to transform M. pulmonis. Targeted integration of this genetic element into the chromosomal hlyA by a single crossing over, which results in the disruption of the gene, could be documented. These mycoplasmal oriC plasmids may therefore become valuable tools for investigating the roles of specific genes, including those potentially implicated in pathogenesis.


Molecular Plant-microbe Interactions | 2006

Tomato Flower Abnormalities Induced by Stolbur Phytoplasma Infection Are Associated with Changes of Expression of Floral Development Genes

Pascale Pracros; Joël Renaudin; Sandrine Eveillard; Armand Mouras; Michel Hernould

Tomato (Lycopersicon esculentum cv. Micro-Tom) plants infected by the stolbur phytoplasma (isolate PO) display floral abnormalities, including sepal hypertrophy, virescence, phyllody, and aborted reproductive organs, which are reminiscent of those observed in Arabidopsis thaliana mutants affected in flower development genes. Semiquantitative reverse transcription-polymerase chain reaction and in situ RNA hybridization were used to compare expressions of meristem and flower development genes in healthy and stolbur phytoplasma-infected tomatoes. In infected plants, FALSIFLORA (FA), controlling the identity of the inflorescence meristem, was up-regulated, whereas LeWUSCHEL (LeWUS) and LeCLAVATA1 (LeCLV1), regulating the meristem development, and LeDEFICIENS (LeDEF), responsible for the organ (petals and stamens) identity within the flower, were down-regulated regardless of the development stage of the flower bud. In contrast, expression of TAG1, which regulates stamen and carpel identities and negatively controls LeWUS, was up-regulated at the early stages and down-regulated at the late stages. In situ RNA hybridization analyses revealed that TAG1 transcripts were restricted to the same floral meristem territories in healthy and infected tomatoes, indicating that tissue-specific expression of TAG1 was not affected by the stolbur phytoplasma infection. Taken together, these data indicate that flower malformations of stolbur phytoplasma-infected tomatoes are associated with early changes in the expression of key flower development genes. The possible mechanisms by which the multiplication of stolbur phytoplasma in tomato sieve tubes deregulates floral development are discussed.


Molecular Plant-microbe Interactions | 2005

Sugar Import and Phytopathogenicity of Spiroplasma citri: Glucose and Fructose Play Distinct Roles

Aurélie André; Mickaël Maucourt; Annick Moing; Dominique Rolin; Joël Renaudin

We have shown previously that the glucose PTS (phosphotransferase system) permease enzyme II of Spiroplasma citri is split into two distinct polypeptides, which are encoded by two separate genes, crr and ptsG. A S. citri mutant was obtained by disruption of ptsG through homologous recombination and was proved unable to import glucose. The ptsG mutant (GII3-glc1) was transmitted to periwinkle (Catharanthus roseus) plants through injection to the leaf-hopper vector. In contrast to the previously characterized fructose operon mutant GMT 553, which was found virtually nonpathogenic, the ptsG mutant GII3-glc1 induced severe symptoms similar to those induced by the wild-type strain GII-3. These results, indicating that fructose and glucose utilization were not equally involved in pathogenicity, were consistent with biochemical data showing that, in the presence of both sugars, S. citri used fructose preferentially. Proton nuclear magnetic resonance analyses of carbohydrates in plant extracts revealed the accumulation of soluble sugars, particularly glucose, in plants infected by S. citri GII-3 or GII3-glc1 but not in those infected by GMT 553. From these data, a hypothetical model was proposed to establish the relationship between fructose utilization by the spiroplasmas present in the phloem sieve tubes and glucose accumulation in the leaves of S. citri infected plants.


Applied and Environmental Microbiology | 2003

Spiralin Is Not Essential for Helicity, Motility, or Pathogenicity but Is Required for Efficient Transmission of Spiroplasma citri by Its Leafhopper Vector Circulifer haematoceps

Sybille Duret; Nathalie Berho; Jean-Luc Danet; Monique Garnier; Joël Renaudin

ABSTRACT Spiralin is the most abundant protein at the surface of the plant pathogenic mollicute Spiroplasma citri and hence might play a role in the interactions of the spiroplasma with its host plant and/or its insect vector. To study spiralin function, mutants were produced by inactivating the spiralin gene through homologous recombination. A spiralin-green fluorescent protein (GFP) translational fusion was engineered and introduced into S. citri by using an oriC-based targeting vector. According to the strategy used, integration of the plasmid by a single-crossover recombination at the spiralin gene resulted in the expression of the spiralin-GFP fusion protein. Two distinct mutants were isolated. Western and colony immunoblot analyses showed that one mutant (GII3-9a5) did produce the spiralin-GFP fusion protein, which was found not to fluoresce, whereas the other (GII3-9a2) produced neither the fusion protein nor the wild-type spiralin. Both mutants displayed helical morphology and motility, similarly to the wild-type strain GII-3. Genomic DNA analyses revealed that GII3-9a5 was unstable and that GII3-9a2 was probably derived from GII3-9a5 by a double-crossover recombination between plasmid sequences integrated into the GII3-9a5 chromosome and free plasmid. When injected into the leafhopper vector Circulifer haematoceps, the spiralinless mutant GII3-9a2 multiplied to high titers in the insects (1.1 × 106 to 2.8 × 106 CFU/insect) but was transmitted to the host plant 100 times less efficiently than the wild-type strain. As a result, not all plants were infected, and symptom production in these plants was delayed for 2 to 4 weeks compared to that in the wild-type strain. In the infected plants however, the mutant multiplied to high titers (1.2 × 106 to 1.4 × 107 CFU/g of midribs) and produced the typical symptoms of the disease. These results indicate that spiralin is not essential for pathogenicity but is required for efficient transmission of S. citri by its insect vector.


Applied and Environmental Microbiology | 2001

Stable Transformation of the Xylella fastidiosa Citrus Variegated Chlorosis Strain with oriC Plasmids

Patrícia B. Monteiro; Diva C. Teixeira; Renê R. Palma; Monique Garnier; Joseph M. Bové; Joël Renaudin

ABSTRACT Xylella fastidiosa is a gram-negative, xylem-limited bacterium affecting economically important crops (e.g., grapevine, citrus, and coffee). The citrus variegated chlorosis (CVC) strain ofX. fastidiosa is the causal agent of this severe disease of citrus in Brazil and represents the first plant-pathogenic bacterium for which the genome sequence was determined. Plasmids for the CVC strain of X. fastidiosa were constructed by combining the chromosomal replication origin (oriC) of X. fastidiosa with a gene which confers resistance to kanamycin (Kanr). In plasmid p16KdAori, the oriCfragment comprised the dnaA gene as well as the two flanking intergenic regions, whereas in plasmid p16Kori theoriC fragment was restricted to thednaA-dnaN intergenic region, which contains dnaA-box like sequences and AT-rich clusters. In plasmid p16K, no oriC sequence was present. In the three constructs, the promoter region of one of the two X. fastidiosa rRNA operons was used to drive the transcription of the Kanr gene to optimize the expression of kanamycin resistance in X. fastidiosa. Five CVC X. fastidiosa strains, including strain 9a5c, the genome sequence of which was determined, and two strains isolated from coffee, were electroporated with plasmid p16KdAori or p16Kori. Two CVC isolates, strains J1a12 and B111, yielded kanamycin-resistant transformants when electroporated with plasmid p16KdAori or p16Kori but not when electroporated with p16K. Southern blot analyses of total DNA extracted from the transformants revealed that, in all clones tested, the plasmid had integrated into the host chromosome at the promoter region of the rRNA operon by homologous recombination. To our knowledge, this is the first report of stable transformation in X. fastidiosa. Integration of oriC plasmids into the X. fastidiosa chromosome by homologous recombination holds considerable promise for functional genomics by specific gene inactivation.


Applied and Environmental Microbiology | 2010

Partial Chromosome Sequence of Spiroplasma citri Reveals Extensive Viral Invasion and Important Gene Decay

Patricia Carle; Colette Saillard; Nathalie Carrère; Sébastien Carrère; Sybille Duret; Sandrine Eveillard; Patrice Gaurivaud; Géraldine Gourgues; Jérôme Gouzy; Pascal Salar; Eric Verdin; Marc Breton; Alain Blanchard; Frédéric Laigret; Joseph M. Bové; Joël Renaudin; Xavier Foissac

ABSTRACT The assembly of 20,000 sequencing reads obtained from shotgun and chromosome-specific libraries of the Spiroplasma citri genome yielded 77 chromosomal contigs totaling 1,674 kbp (92%) of the 1,820-kbp chromosome. The largest chromosomal contigs were positioned on the physical and genetic maps constructed from pulsed-field gel electrophoresis and Southern blot hybridizations. Thirty-eight contigs were annotated, resulting in 1,908 predicted coding sequences (CDS) representing an overall coding density of only 74%. Cellular processes, cell metabolism, and structural-element CDS account for 29% of the coding capacity, CDS of external origin such as viruses and mobile elements account for 24% of the coding capacity, and CDS of unknown function account for 47% of the coding capacity. Among these, 21% of the CDS group into 63 paralog families. The organization of these paralogs into conserved blocks suggests that they represent potential mobile units. Phage-related sequences were particularly abundant and include plectrovirus SpV1 and SVGII3 and lambda-like SpV2 sequences. Sixty-nine copies of transposases belonging to four insertion sequence (IS) families (IS30, IS481, IS3, and ISNCY) were detected. Similarity analyses showed that 21% of chromosomal CDS were truncated compared to their bacterial orthologs. Transmembrane domains, including signal peptides, were predicted for 599 CDS, of which 58 were putative lipoproteins. S. citri has a Sec-dependent protein export pathway. Eighty-four CDS were assigned to transport, such as phosphoenolpyruvate phosphotransferase systems (PTS), the ATP binding cassette (ABC), and other transporters. Besides glycolytic and ATP synthesis pathways, it is noteworthy that S. citri possesses a nearly complete pathway for the biosynthesis of a terpenoid.

Collaboration


Dive into the Joël Renaudin's collaboration.

Top Co-Authors

Avatar

Joseph M. Bové

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colette Saillard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laure Béven

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monique Garnier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sandrine Eveillard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Foissac

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alain Blanchard

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge