Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sybille Duret is active.

Publication


Featured researches published by Sybille Duret.


Applied and Environmental Microbiology | 2003

Spiralin Is Not Essential for Helicity, Motility, or Pathogenicity but Is Required for Efficient Transmission of Spiroplasma citri by Its Leafhopper Vector Circulifer haematoceps

Sybille Duret; Nathalie Berho; Jean-Luc Danet; Monique Garnier; Joël Renaudin

ABSTRACT Spiralin is the most abundant protein at the surface of the plant pathogenic mollicute Spiroplasma citri and hence might play a role in the interactions of the spiroplasma with its host plant and/or its insect vector. To study spiralin function, mutants were produced by inactivating the spiralin gene through homologous recombination. A spiralin-green fluorescent protein (GFP) translational fusion was engineered and introduced into S. citri by using an oriC-based targeting vector. According to the strategy used, integration of the plasmid by a single-crossover recombination at the spiralin gene resulted in the expression of the spiralin-GFP fusion protein. Two distinct mutants were isolated. Western and colony immunoblot analyses showed that one mutant (GII3-9a5) did produce the spiralin-GFP fusion protein, which was found not to fluoresce, whereas the other (GII3-9a2) produced neither the fusion protein nor the wild-type spiralin. Both mutants displayed helical morphology and motility, similarly to the wild-type strain GII-3. Genomic DNA analyses revealed that GII3-9a5 was unstable and that GII3-9a2 was probably derived from GII3-9a5 by a double-crossover recombination between plasmid sequences integrated into the GII3-9a5 chromosome and free plasmid. When injected into the leafhopper vector Circulifer haematoceps, the spiralinless mutant GII3-9a2 multiplied to high titers in the insects (1.1 × 106 to 2.8 × 106 CFU/insect) but was transmitted to the host plant 100 times less efficiently than the wild-type strain. As a result, not all plants were infected, and symptom production in these plants was delayed for 2 to 4 weeks compared to that in the wild-type strain. In the infected plants however, the mutant multiplied to high titers (1.2 × 106 to 1.4 × 107 CFU/g of midribs) and produced the typical symptoms of the disease. These results indicate that spiralin is not essential for pathogenicity but is required for efficient transmission of S. citri by its insect vector.


Applied and Environmental Microbiology | 2010

Partial Chromosome Sequence of Spiroplasma citri Reveals Extensive Viral Invasion and Important Gene Decay

Patricia Carle; Colette Saillard; Nathalie Carrère; Sébastien Carrère; Sybille Duret; Sandrine Eveillard; Patrice Gaurivaud; Géraldine Gourgues; Jérôme Gouzy; Pascal Salar; Eric Verdin; Marc Breton; Alain Blanchard; Frédéric Laigret; Joseph M. Bové; Joël Renaudin; Xavier Foissac

ABSTRACT The assembly of 20,000 sequencing reads obtained from shotgun and chromosome-specific libraries of the Spiroplasma citri genome yielded 77 chromosomal contigs totaling 1,674 kbp (92%) of the 1,820-kbp chromosome. The largest chromosomal contigs were positioned on the physical and genetic maps constructed from pulsed-field gel electrophoresis and Southern blot hybridizations. Thirty-eight contigs were annotated, resulting in 1,908 predicted coding sequences (CDS) representing an overall coding density of only 74%. Cellular processes, cell metabolism, and structural-element CDS account for 29% of the coding capacity, CDS of external origin such as viruses and mobile elements account for 24% of the coding capacity, and CDS of unknown function account for 47% of the coding capacity. Among these, 21% of the CDS group into 63 paralog families. The organization of these paralogs into conserved blocks suggests that they represent potential mobile units. Phage-related sequences were particularly abundant and include plectrovirus SpV1 and SVGII3 and lambda-like SpV2 sequences. Sixty-nine copies of transposases belonging to four insertion sequence (IS) families (IS30, IS481, IS3, and ISNCY) were detected. Similarity analyses showed that 21% of chromosomal CDS were truncated compared to their bacterial orthologs. Transmembrane domains, including signal peptides, were predicted for 599 CDS, of which 58 were putative lipoproteins. S. citri has a Sec-dependent protein export pathway. Eighty-four CDS were assigned to transport, such as phosphoenolpyruvate phosphotransferase systems (PTS), the ATP binding cassette (ABC), and other transporters. Besides glycolytic and ATP synthesis pathways, it is noteworthy that S. citri possesses a nearly complete pathway for the biosynthesis of a terpenoid.


Plasmid | 2002

New plasmid vectors for specific gene targeting in Spiroplasma citri

Carole Lartigue; Sybille Duret; Monique Garnier; Joël Renaudin

In Spiroplasma citri gene inactivation through homologous recombination has been achieved by using the replicative, oriC plasmid pBOT1 as the disruption vector. However, plasmid recombination required extensive passaging of the transformants and, in most cases, recombination occurred at oriC rather than at the target gene. In the current study, we describe a new vector, in which the oriC fragment was reduced to the minimal sequences able to promote plasmid replication. Using this vector to inactivate the motility gene scm1 showed that size reduction of the oriC fragment did increase the frequency of recombination at the target gene. Furthermore, to avoid extensive passaging of the transformants, we developed a strategy in which the selective, tetracycline resistance phenotype can only be expressed once the plasmid has integrated into the chromosome by one single crossover recombination at the target gene. As an example, targeting of the spiralin gene is described.


Cellular Microbiology | 2014

Invasion of insect cells by Spiroplasma citri involves spiralin relocalization and lectin/glycoconjugate-type interactions.

Sybille Duret; Brigitte Batailler; Marie-Pierre Dubrana; Colette Saillard; Joël Renaudin; Laure Béven; Nathalie Arricau-Bouvery

Spiroplamas are helical, cell wall‐less bacteria belonging to the Class Mollicutes, a group of microorganisms phylogenetically related to low G+C, Gram‐positive bacteria. Spiroplasma species are all found associated with arthropods and a few, including Spiroplasma citri are pathogenic to plant. Thus S. citri has the ability to colonize cells of two very distinct hosts, the plant and the insect vector. While spiroplasmal factors involved in transmission by the leafhopper Circulifer haematoceps have been identified, their specific contribution to invasion of insect cells is poorly understood. In this study we provide evidence that the lipoprotein spiralin plays a major role in the very early step of cell invasion. Confocal laser scanning immunomicroscopy revealed a relocalization of spiralin at the contact zone of adhering spiroplasmas. The implication of a role for spiralin in adhesion to insect cells was further supported by adhesion assays showing that a spiralin‐less mutant was impaired in adhesion and that recombinant spiralin triggered adhesion of latex beads. We also showed that cytochalasin D induced changes in the surface‐exposed glycoconjugates, as inferred from the lectin binding patterns, and specifically improved adhesion of S. citri wild‐type but not of the spiralin‐less mutant. These results indicate that cytochalasin D exposes insect cell receptors of spiralin that are masked in untreated cells. In addition, competitive adhesion assays with lectins strongly suggest spiralin to exhibit glycoconjugate binding properties similar to that of the Vicia villosa agglutinin (VVA) lectin.


Microbiology | 2008

Characterizing the replication and stability regions of Spiroplasma citri plasmids identifies a novel replication protein and expands the genetic toolbox for plant-pathogenic spiroplasmas.

Marc Breton; Sybille Duret; Nathalie Arricau-Bouvery; Laure Béven; Joël Renaudin

Spiroplasma citri strain GII3 contains seven plasmids, pSciA and pSci1-6, that share extensive regions of sequence homology and display a mosaic gene organization. Plasmid pSci2 comprises 12 coding sequences (CDS), three of which encode polypeptides homologous to proteins Soj/ParA, involved in chromosome partitioning, and TrsE and Mob/TraG, implicated in the type IV secretion pathway. One CDS encodes the adhesin-like protein ScARP3d whereas the other eight encode polypeptides with no homology to known proteins. The pSci2 CDS pE and soj have counterparts in all seven plasmids. Through successive deletions, various pSci2 derivatives were constructed and assessed for their ability to replicate by transformation of S. citri 44, a strain which has no plasmid. The smallest functional replicon was found to contain a single CDS (pE) and its flanking intergenic regions. Shuttle (S. citri/Escherichia coli) plasmids, in which CDS pE was disrupted, failed to replicate in S. citri, suggesting that PE is the replication protein of the S. citri plasmids. Successive propagations of pSci2-derived transformed spiroplasmas, in the absence of selection pressure, revealed that only pSci2 derivatives having an intact soj gene were stably maintained, indicating that the soj-encoded polypeptide is most likely involved in plasmid partitioning. Upon transformation, pSci2 derivatives, including shuttle (S. citri/E. coli) plasmids, were shown to replicate in all S. citri strains tested regardless of whether the strain possesses endogenous plasmids, such as strain GII3, or not, such as strain R8A2. In addition, the pSci replicons were introduced efficiently into the plant-pathogenic spiroplasmas Spiroplasma kunkelii and Spiroplasma phoeniceum, the transformation of which had never, to our knowledge, been described before. These studies show that, besides their implications for the biology of S. citri, the pSci plasmids hold considerable promise as vectors of general use for genetic studies of plant-pathogenic spiroplasmas. As an example, a HA-tagged S. citri protein was expressed in S. kunkelii. Detection of pE-hybridizing sequences in various group I spiroplasma species indicated that pE replicating plasmids were not restricted to the three plant-pathogenic spiroplasmas.


PLOS ONE | 2012

The Repetitive Domain of ScARP3d Triggers Entry of Spiroplasma citri into Cultured Cells of the Vector Circulifer haematoceps

Laure Béven; Sybille Duret; Brigitte Batailler; Marie-Pierre Dubrana; Colette Saillard; Joël Renaudin; Nathalie Arricau-Bouvery

Spiroplasma citri is a plant pathogenic mollicute transmitted by the leafhopper vector Circulifer haematoceps. Successful transmission requires the spiroplasmas to cross the intestinal epithelium and salivary gland barriers through endocytosis mediated by receptor-ligand interactions. To characterize these interactions we studied the adhesion and invasion capabilities of a S. citri mutant using the Ciha-1 leafhopper cell line. S. citri GII3 wild-type contains 7 plasmids, 5 of which (pSci1 to 5) encode 8 related adhesins (ScARPs). As compared to the wild-type strain GII3, the S. citri mutant G/6 lacking pSci1 to 5 was affected in its ability to adhere and enter into the Ciha-1 cells. Proteolysis analyses, Triton X-114 partitioning and agglutination assays showed that the N-terminal part of ScARP3d, consisting of repeated sequences, was exposed to the spiroplasma surface whereas the C-terminal part was anchored into the membrane. Latex beads cytadherence assays showed the ScARP3d repeat domain (Rep3d) to be involved, and internalization of the Rep3d-coated beads to be actin-dependent. These data suggested that ScARP3d, via its Rep3d domain, was implicated in adhesion of S. citri GII3 to insect cells. Inhibition tests using anti-Rep3d antibodies and competitive assays with recombinant Rep3d both resulted in a decrease of insect cells invasion by the spiroplasmas. Unexpectedly, treatment of Ciha-1 cells with the actin polymerisation inhibitor cytochalasin D increased adhesion and consequently entry of S. citri GII3. For the ScARPs-less mutant G/6, only adhesion was enhanced though to a lesser extent following cytochalasin D treatment. All together these results strongly suggest a role of ScARPs, and particularly ScARP3d, in adhesion and invasion of the leafhopper cells by S. citri.


Applied and Environmental Microbiology | 2010

Sequences Essential for Transmission of Spiroplasma citri by Its Leafhopper Vector, Circulifer haematoceps, Revealed by Plasmid Curing and Replacement Based on Incompatibility†

Marc Breton; Sybille Duret; Jean-Luc Danet; Marie-Pierre Dubrana; Joël Renaudin

ABSTRACT Spiroplasma citri GII3 contains highly related low-copy-number plasmids pSci1 to -6. Despite the strong similarities between their replication regions, these plasmids coexist in the spiroplasma cells, indicating that they are mutually compatible. The pSci1 to -6 plasmids encode the membrane proteins known as S. citri adhesion-related proteins (ScARPs) (pSci1 to -5) and the hydrophilic protein P32 (pSci6), which had been tentatively associated with insect transmission, as they were not detected in non-insect-transmissible strains. With the aim of further investigating the role of plasmid-encoded determinants in insect transmission, we have constructed S. citri mutant strains that differ in their plasmid contents by developing a plasmid curing/replacement strategy based on the incompatibility of plasmids having identical replication regions. Experimental transmission of these S. citri plasmid mutants through injection into the leafhopper vector Circulifer haematoceps revealed that pSci6, more precisely, the pSci6_06 coding sequence, encoding a protein of unknown function, was essential for transmission. In contrast, ScARPs and P32 were dispensable for both acquisition and transmission of the spiroplasmas by the leafhopper vector, even though S. citri mutants lacking pSci1 to -5 (encoding ScARPs) were acquired and transmitted at lower efficiencies than the wild-type strain GII3.


Microbiology | 2010

Infection of the Circulifer haematoceps cell line Ciha-1 by Spiroplasma citri: the non-insect-transmissible strain 44 is impaired in invasion.

Sybille Duret; Brigitte Batailler; Jean-Luc Danet; Laure Béven; Joël Renaudin; Nathalie Arricau-Bouvery

Successful transmission of Spiroplasma citri by its leafhopper vector requires a specific interaction between the spiroplasma surface and the insect cells. With the aim of studying these interactions at the cellular and molecular levels, a cell line, named Ciha-1, was established using embryonic tissues from the eggs of the S. citri natural vector Circulifer haematoceps. This is the first report, to our knowledge, of a cell line for this leafhopper species and of its successful infection by the insect-transmissible strain S. citri GII3. Adherence of the spiroplasmas to the cultured Ciha-1 cells was studied by c.f.u. counts and by electron microscopy. Entry of the spiroplasmas into the insect cells was analysed quantitatively by gentamicin protection assays and qualitatively by double immunofluorescence microscopy. Spiroplasmas were detected within the cell cytoplasm as early as 1 h after inoculation and survived at least 2 days inside the cells. Comparing the insect-transmissible GII3 and non-insect-transmissible 44 strains revealed that adherence to and entry into Ciha-1 cells of S. citri 44 were significantly less efficient than those of S. citri GII3.


BMC Microbiology | 2015

Heterologous expression and processing of the flavescence dorée phytoplasma variable membrane protein VmpA in Spiroplasma citri

Joël Renaudin; Laure Béven; Brigitte Batailler; Sybille Duret; Delphine Desqué; Nathalie Arricau-Bouvery; Sylvie Malembic-Maher; Xavier Foissac

BackgroundFlavescence dorée (FD) of grapevine is a phloem bacterial disease that threatens European vineyards. The disease is associated with a non-cultivable mollicute, a phytoplasma that is transmitted by the grapevine leafhopper Scaphoideus titanus in a persistent, propagative manner. The specificity of insect transmission is presumably mediated through interactions between the host tissues and phytoplasma surface proteins comprising the so-called variable membrane proteins (Vmps). Plant spiroplasmas and phytoplasmas share the same ecological niches, the phloem sieve elements of host plants and the hemocoel of insect vectors. Unlike phytoplasmas, however, spiroplasmas, and Spiroplasma citri in particular, can be grown in cell-free media and genetically engineered. As a new approach for studying phytoplasmas-insect cell interactions, we sought to mimic phytoplasmas through the construction of recombinant spiroplasmas exhibiting FD phytoplasma Vmps at the cell surface.ResultsHere, we report the expression of the FD phytoplasma VmpA in S. citri. Transformation of S. citri with plasmid vectors in which the vmpA coding sequence was under the control of the S. citri tuf gene promoter resulted in higher accumulation of VmpA than with the native promoter. Expression of VmpA at the spiroplasma surface was achieved by fusing the vmpA coding sequence to the signal peptide sequence of the S. citri adhesin ScARP3d, as revealed by direct colony immunoblotting and immunogold labelling electron microscopy. Anchoring of VmpA to the spiroplasma membrane was further demonstrated by Triton X-114 protein partitioning and Western immunoblotting. Using the same strategy, the secretion of free, functionally active β-lactamase (used as a model protein) into the culture medium by recombinant spiroplasmas was achieved.ConclusionsConstruction of recombinant spiroplasmas harbouring the FD phytoplasma variable membrane protein VmpA at their surface was achieved, which provides a new biological approach for studying interactions of phytoplasma surface proteins with host cells. Likewise, the secretion of functional β-lactamase by recombinant spiroplasmas established the considerable promise of the S. citri expression system for delivering phytoplasma effector proteins into host cells.


Microbiology | 2010

First report of a tetracycline-inducible gene expression system for mollicutes

Marc Breton; Evelyne Sagné; Sybille Duret; Laure Béven; Christine Citti; Joël Renaudin

Inducible promoter systems are powerful tools for studying gene function in prokaryotes but have never been shown to function in mollicutes. In this study we evaluated the efficacy of the tetracycline-inducible promoter Pxyl/tetO(2) from Bacillus subtilis in controlling gene expression in two mollicutes, the plant pathogen Spiroplasma citri and the animal pathogen Mycoplasma agalactiae. An S. citri plasmid carrying the spiralin gene under the control of the xyl/tetO(2) tetracycline-inducible promoter and the TetR repressor gene under the control of a constitutive spiroplasmal promoter was introduced into the spiralin-less S. citri mutant GII3-9a3. In the absence of tetracycline, expression of TetR almost completely abolished expression of spiralin from the xyl/tetO(2) promoter. Adding tetracycline (>50 ng ml(-1)) to the medium induced high-level expression of spiralin. Interestingly, inducible expression of spiralin was also detected in vivo: in S. citri-infected leafhoppers fed on tetracycline-containing medium and in S. citri-infected plants watered with tetracycline. A similar construct was introduced into the M. agalactiae chromosome through transposition. Tetracycline-induced expression of spiralin proved the TetR-Pxyl/tetO(2) system to be functional in the ruminant pathogen, suggesting that this tetracycline-inducible promoter system might be of general use in mollicutes.

Collaboration


Dive into the Sybille Duret's collaboration.

Top Co-Authors

Avatar

Joël Renaudin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laure Béven

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Breton

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar

Colette Saillard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph M. Bové

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge