Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan Staaf is active.

Publication


Featured researches published by Johan Staaf.


Nature | 2016

Landscape of somatic mutations in 560 breast cancer whole-genome sequences

Serena Nik-Zainal; Helen Davies; Johan Staaf; Manasa Ramakrishna; Dominik Glodzik; Xueqing Zou; Inigo Martincorena; Ludmil B. Alexandrov; Sancha Martin; David C. Wedge; Peter Van Loo; Young Seok Ju; Michiel M. Smid; Arie B. Brinkman; Sandro Morganella; Miriam Ragle Aure; Ole Christian Lingjærde; Anita Langerød; Markus Ringnér; Sung-Min Ahn; Sandrine Boyault; Jane E. Brock; Annegien Broeks; Adam Butler; Christine Desmedt; Luc Dirix; Serge Dronov; Aquila Fatima; John A. Foekens; Moritz Gerstung

We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.


Nature Genetics | 2008

Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair

Lao H. Saal; Sofia K. Gruvberger-Saal; Camilla Persson; Kristina Lövgren; Johan Staaf; Göran Jönsson; Maira M. Pires; Matthew Maurer; Karolina Holm; Susan Koujak; Shivakumar Subramaniyam; Johan Vallon-Christersson; Haökan Olsson; Tao Su; Lorenzo Memeo; Thomas Ludwig; Stephen P. Ethier; Morten Krogh; Matthias Szabolcs; Vundavalli V. Murty; Jorma Isola; Hanina Hibshoosh; Ramon Parsons; Åke Borg

Basal-like breast cancer (BBC) is a subtype of breast cancer with poor prognosis. Inherited mutations of BRCA1, a cancer susceptibility gene involved in double-strand DNA break (DSB) repair, lead to breast cancers that are nearly always of the BBC subtype; however, the precise molecular lesions and oncogenic consequences of BRCA1 dysfunction are poorly understood. Here we show that heterozygous inactivation of the tumor suppressor gene Pten leads to the formation of basal-like mammary tumors in mice, and that loss of PTEN expression is significantly associated with the BBC subtype in human sporadic and BRCA1-associated hereditary breast cancers. In addition, we identify frequent gross PTEN mutations, involving intragenic chromosome breaks, inversions, deletions and micro copy number aberrations, specifically in BRCA1-deficient tumors. These data provide an example of a specific and recurrent oncogenic consequence of BRCA1-dependent dysfunction in DNA repair and provide insight into the pathogenesis of BBC with therapeutic implications. These findings also argue that obtaining an accurate census of genes mutated in cancer will require a systematic examination for gross gene rearrangements, particularly in tumors with deficient DSB repair.


PLOS ONE | 2011

GOBO: Gene Expression-Based Outcome for Breast Cancer Online.

Markus Ringnér; Erik Fredlund; Jari Häkkinen; Åke Borg; Johan Staaf

Microarray-based gene expression analysis holds promise of improving prognostication and treatment decisions for breast cancer patients. However, the heterogeneity of breast cancer emphasizes the need for validation of prognostic gene signatures in larger sample sets stratified into relevant subgroups. Here, we describe a multifunctional user-friendly online tool, GOBO (http://co.bmc.lu.se/gobo), allowing a range of different analyses to be performed in an 1881-sample breast tumor data set, and a 51-sample breast cancer cell line set, both generated on Affymetrix U133A microarrays. GOBO supports a wide range of applications including: 1) rapid assessment of gene expression levels in subgroups of breast tumors and cell lines, 2) identification of co-expressed genes for creation of potential metagenes, 3) association with outcome for gene expression levels of single genes, sets of genes, or gene signatures in multiple subgroups of the 1881-sample breast cancer data set. The design and implementation of GOBO facilitate easy incorporation of additional query functions and applications, as well as additional data sets irrespective of tumor type and array platform.


Breast Cancer Research | 2010

Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns

Karolina Holm; Cecilia Hegardt; Johan Staaf; Johan Vallon-Christersson; Göran Jönsson; Håkan Olsson; Åke Borg; Markus Ringnér

IntroductionFive different molecular subtypes of breast cancer have been identified through gene expression profiling. Each subtype has a characteristic expression pattern suggested to partly depend on cellular origin. We aimed to investigate whether the molecular subtypes also display distinct methylation profiles.MethodsWe analysed methylation status of 807 cancer-related genes in 189 fresh frozen primary breast tumours and four normal breast tissue samples using an array-based methylation assay.ResultsUnsupervised analysis revealed three groups of breast cancer with characteristic methylation patterns. The three groups were associated with the luminal A, luminal B and basal-like molecular subtypes of breast cancer, respectively, whereas cancers of the HER2-enriched and normal-like subtypes were distributed among the three groups. The methylation frequencies were significantly different between subtypes, with luminal B and basal-like tumours being most and least frequently methylated, respectively. Moreover, targets of the polycomb repressor complex in breast cancer and embryonic stem cells were more methylated in luminal B tumours than in other tumours. BRCA2-mutated tumours had a particularly high degree of methylation. Finally, by utilizing gene expression data, we observed that a large fraction of genes reported as having subtype-specific expression patterns might be regulated through methylation.ConclusionsWe have found that breast cancers of the basal-like, luminal A and luminal B molecular subtypes harbour specific methylation profiles. Our results suggest that methylation may play an important role in the development of breast cancers.


International Journal of Cancer | 2009

MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31.

Srinivas Veerla; David Lindgren; Anders Kvist; Attila Frigyesi; Johan Staaf; Helena Persson; Fredrik Liedberg; Gunilla Chebil; Sigurdur Gudjonsson; Åke Borg; Wiking Månsson; Carlos Rovira; Mattias Höglund

We analyzed 34 cases of urothelial carcinomas by miRNA, mRNA and genomic profiling. Unsupervised hierarchical clustering using expression information for 300 miRNAs produced 3 major clusters of tumors corresponding to Ta, T1 and T2‐T3 tumors, respectively. A subsequent SAM analysis identified 51 miRNAs that discriminated the 3 pathological subtypes. A score based on the expression levels of the 51 miRNAs, identified muscle invasive tumors with high precision and sensitivity. MiRNAs showing high expression in muscle invasive tumors included miR‐222 and miR‐125b and in Ta tumors miR‐10a. A miRNA signature for FGFR3 mutated cases was also identified with miR‐7 as an important member. MiR‐31, located in 9p21, was found to be homozygously deleted in 3 cases and miR‐452 and miR‐452* were shown to be over expressed in node positive tumors. In addition, these latter miRNAs were shown to be excellent prognostic markers for death by disease as outcome. The presented data shows that pathological subtypes of urothelial carcinoma show distinct miRNA gene expression signatures.


Genes, Chromosomes and Cancer | 2007

High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization.

Göran Jönsson; Johan Staaf; Eleonor Olsson; Markus Heidenblad; Johan Vallon-Christersson; Kazutoyo Osoegawa; Pieter J. de Jong; Stina Oredsson; Markus Ringnér; Mattias Höglund; Åke Borg

A BAC‐array platform for comparative genomic hybridization was constructed from a library of 32,433 clones providing complete genome coverage, and evaluated by screening for DNA copy number changes in 10 breast cancer cell lines (BT474, MCF7, HCC1937, SK‐BR‐3, L56Br‐C1, ZR‐75‐1, JIMT1, MDA‐MB‐231, MDA‐MB‐361, and HCC2218) and one cell line derived from fibrocystic disease of the breast (MCF10A). These were also characterized by gene expression analysis and found to represent all five recently described breast cancer subtypes using the “intrinsic gene set” and centroid correlation. Three cell lines, HCC1937 and L56BrC1 derived from BRCA1 mutation carriers and MDA‐MB‐231, were of basal‐like subtype and characterized by a high frequency of low‐level gains and losses of typical pattern, including limited deletions on 5q. Four estrogen receptor positive cell lines were of luminal A subtype and characterized by a different pattern of aberrations and high‐level amplifications, including ERBB2 and other 17q amplicons in BT474 and MDA‐MB‐361. SK‐BR‐3 cells, characterized by a complex genome including ERBB2 amplification, massive high‐level amplifications on 8q and a homozygous deletion of CDH1 at 16q22, had an expression signature closest to luminal B subtype. The effects of gene amplifications were verified by gene expression analysis to distinguish targeted genes from silent amplicon passengers. JIMT1, derived from an ERBB2 amplified trastuzumab resistant tumor, was of the ERBB2 subtype. Homozygous deletions included other known targets such as PTEN (HCC1937) and CDKN2A (MDA‐MB‐231, MCF10A), but also new candidate suppressor genes such as FUSSEL18 (HCC1937) and WDR11 (L56Br‐C1) as well as regions without known genes. The tiling BAC‐arrays constitute a powerful tool for high‐resolution genomic profiling suitable for cancer research and clinical diagnostics.


Cancer Research | 2005

Distinct Genomic Profiles in Hereditary Breast Tumors Identified by Array-Based Comparative Genomic Hybridization

Göran Jönsson; Tara L. Naylor; Johan Vallon-Christersson; Johan Staaf; Jia Huang; M. Renee Ward; Joel Greshock; Lena Luts; Håkan Olsson; Nazneen Rahman; Michael R. Stratton; Markus Ringnér; Åke Borg; Barbara L. Weber

Mutations in BRCA1 and BRCA2 account for a significant proportion of hereditary breast cancers. Earlier studies have shown that inherited and sporadic tumors progress along different somatic genetic pathways and that global gene expression profiles distinguish between these groups. To determine whether genomic profiles similarly discriminate among BRCA1, BRCA2, and sporadic tumors, we established DNA copy number profiles using comparative genomic hybridization to BAC-clone microarrays providing <1 Mb resolution. Tumor DNA was obtained from BRCA1 (n = 14) and BRCA2 (n = 12) mutation carriers, as well as sporadic cases (n = 26). Overall, BRCA1 tumors had a higher frequency of copy number alterations than sporadic breast cancers (P = 0.00078). In particular, frequent losses on 4p, 4q, and 5q in BRCA1 tumors and frequent gains on 7p and 17q24 in BRCA2 tumors distinguish these from sporadic tumors. Distinct amplicons at 3q27.1-q27.3 were identified in BRCA1 tumors and at 17q23.3-q24.2 in BRCA2 tumors. A homozygous deletion on 5q12.1 was found in a BRCA1 tumor. Using a set of 169 BAC clones that detect significantly (P < 0.001) different frequencies of copy number changes in inherited and sporadic tumors, these could be discriminated into separate groups using hierarchical clustering. By comparing DNA copy number and RNA expression for genes in these regions, several candidate genes affected by up- or down-regulation were identified. Moreover, using support vector machines, we correctly classified BRCA1 and BRCA2 tumors (P < 0.0000004 and 0.00005, respectively). Further validation may prove this tumor classifier to be useful for selecting familial breast cancer cases for further mutation screening, particularly, as these data can be obtained using archival tissue.


Breast Cancer Research | 2010

Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics

Göran Jönsson; Johan Staaf; Johan Vallon-Christersson; Markus Ringnér; Karolina Holm; Cecilia Hegardt; Haukur Gunnarsson; Rainer Fagerholm; Carina Strand; Bjarni A. Agnarsson; Outi Kilpivaara; Lena Luts; Päivi Heikkilä; Kristiina Aittomäki; Carl Blomqvist; Niklas Loman; Per Malmström; Håkan Olsson; Oskar Th Johannsson; Adalgeir Arason; Heli Nevanlinna; Rosa B. Barkardottir; Åke Borg

IntroductionBreast cancer is a profoundly heterogeneous disease with respect to biologic and clinical behavior. Gene-expression profiling has been used to dissect this complexity and to stratify tumors into intrinsic gene-expression subtypes, associated with distinct biology, patient outcome, and genomic alterations. Additionally, breast tumors occurring in individuals with germline BRCA1 or BRCA2 mutations typically fall into distinct subtypes.MethodsWe applied global DNA copy number and gene-expression profiling in 359 breast tumors. All tumors were classified according to intrinsic gene-expression subtypes and included cases from genetically predisposed women. The Genomic Identification of Significant Targets in Cancer (GISTIC) algorithm was used to identify significant DNA copy-number aberrations and genomic subgroups of breast cancer.ResultsWe identified 31 genomic regions that were highly amplified in > 1% of the 359 breast tumors. Several amplicons were found to co-occur, the 8p12 and 11q13.3 regions being the most frequent combination besides amplicons on the same chromosomal arm. Unsupervised hierarchical clustering with 133 significant GISTIC regions revealed six genomic subtypes, termed 17q12, basal-complex, luminal-simple, luminal-complex, amplifier, and mixed subtypes. Four of them had striking similarity to intrinsic gene-expression subtypes and showed associations to conventional tumor biomarkers and clinical outcome. However, luminal A-classified tumors were distributed in two main genomic subtypes, luminal-simple and luminal-complex, the former group having a better prognosis, whereas the latter group included also luminal B and the majority of BRCA2-mutated tumors. The basal-complex subtype displayed extensive genomic homogeneity and harbored the majority of BRCA1-mutated tumors. The 17q12 subtype comprised mostly HER2-amplified and HER2-enriched subtype tumors and had the worst prognosis. The amplifier and mixed subtypes contained tumors from all gene-expression subtypes, the former being enriched for 8p12-amplified cases, whereas the mixed subtype included many tumors with predominantly DNA copy-number losses and poor prognosis.ConclusionsGlobal DNA copy-number analysis integrated with gene-expression data can be used to dissect the complexity of breast cancer. This revealed six genomic subtypes with different clinical behavior and a striking concordance to the intrinsic subtypes. These genomic subtypes may prove useful for understanding the mechanisms of tumor development and for prognostic and treatment prediction purposes.


Cancer Research | 2011

Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene.

Helena Persson; Anders Kvist; Natalia Rego; Johan Staaf; Johan Vallon-Christersson; Lena Luts; Niklas Loman; Göran Jönsson; Hugo Naya; Mattias Höglund; Åke Borg; Carlos Rovira

To comprehensively characterize microRNA (miRNA) expression in breast cancer, we performed the first extensive next-generation sequencing expression analysis of this disease. We sequenced small RNA from tumors with paired samples of normal and tumor-adjacent breast tissue. Our results indicate that tumor identity is achieved mainly by variation in the expression levels of a common set of miRNAs rather than by tissue-specific expression. We also report 361 new, well-supported miRNA precursors. Nearly two-thirds of these new genes were detected in other human tissues and 49% of the miRNAs were found associated with Ago2 in MCF7 cells. Ten percent of the new miRNAs are located in regions with high-level genomic amplifications in breast cancer. A new miRNA is encoded within the ERBB2/Her2 gene and amplification of this gene leads to overexpression of the new miRNA, indicating that this potent oncogene and important clinical marker may have two different biological functions. In summary, our work substantially expands the number of known miRNAs and highlights the complexity of small RNA expression in breast cancer.


Genes, Chromosomes and Cancer | 2008

Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia-A comparative study of four differently designed, high resolution microarray platforms.

Rebeqa Gunnarsson; Johan Staaf; Mattias Jansson; Anne Marie Ottesen; Hanna Göransson; Ulrika Liljedahl; Ulrik Ralfkiær; Mahmoud Mansouri; Anne Mette Buhl; Karin E. Smedby; Henrik Hjalgrim; Ann-Christine Syvänen; Åke Borg; Anders Isaksson; Jesper Jurlander; Gunnar Juliusson; Richard Rosenquist

Screening for gene copy‐number alterations (CNAs) has improved by applying genome‐wide microarrays, where SNP arrays also allow analysis of loss of heterozygozity (LOH). We here analyzed 10 chronic lymphocytic leukemia (CLL) samples using four different high‐resolution platforms: BAC arrays (32K), oligonucleotide arrays (185K, Agilent), and two SNP arrays (250K, Affymetrix and 317K, Illumina). Cross‐platform comparison revealed 29 concordantly detected CNAs, including known recurrent alterations, which confirmed that all platforms are powerful tools when screening for large aberrations. However, detection of 32 additional regions present in 2–3 platforms illustrated a discrepancy in detection of small CNAs, which often involved reported copy‐number variations. LOH analysis using dChip revealed concordance of mainly large regions, but showed numerous, small nonoverlapping regions and LOH escaping detection. Evaluation of baseline variation and copy‐number ratio response showed the best performance for the Agilent platform and confirmed the robustness of BAC arrays. Accordingly, these platforms demonstrated a higher degree of platform‐specific CNAs. The SNP arrays displayed higher technical variation, although this was compensated by high density of elements. Affymetrix detected a higher degree of CNAs compared to Illumina, while the latter showed a lower noise level and higher detection rate in the LOH analysis. Large‐scale studies of genomic aberrations are now feasible, but new tools for LOH analysis are requested.

Collaboration


Dive into the Johan Staaf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge