Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henk Tjebbe vanderLeest is active.

Publication


Featured researches published by Henk Tjebbe vanderLeest.


Current Biology | 2007

Seasonal Encoding by the Circadian Pacemaker of the SCN

Henk Tjebbe vanderLeest; Thijs Houben; Stephan Michel; Tom Deboer; Henk Albus; Mariska J. Vansteensel; Gene D. Block; Johanna H. Meijer

The circadian pacemaker of the suprachiasmatic nucleus (SCN) functions as a seasonal clock through its ability to encode day length [1-6]. To investigate the mechanism by which SCN neurons code for day length, we housed mice under long (LD 16:8) and short (LD 8:16) photoperiods. Electrophysiological recordings of multiunit activity (MUA) in the SCN of freely moving mice revealed broad activity profiles in long days and compressed activity profiles in short days. The patterns remained consistent after release of the mice in constant darkness. Recordings of MUA in acutely prepared hypothalamic slices showed similar differences between the SCN electrical activity patterns in vitro in long and short days. In vitro recordings of neuronal subpopulations revealed that the width of the MUA activity profiles was determined by the distribution of phases of contributing units within the SCN. The subpopulation patterns displayed a significantly broader distribution in long days than in short days. Long-term recordings of single-unit activity revealed short durations of elevated activity in both short and long days (3.48 and 3.85 hr, respectively). The data indicate that coding for day length involves plasticity within SCN neuronal networks in which the phase distribution of oscillating neurons carries information on the photoperiods duration.


The Journal of Neuroscience | 2012

Evidence for Neuronal Desynchrony in the Aged Suprachiasmatic Nucleus Clock

Sahar Farajnia; Stephan Michel; Tom Deboer; Henk Tjebbe vanderLeest; Thijs Houben; Jos H. T. Rohling; Ashna Ramkisoensing; Roman Yasenkov; Johanna H. Meijer

Aging is associated with a deterioration of daily (circadian) rhythms in physiology and behavior. Deficits in the function of the central circadian pacemaker in the suprachiasmatic nucleus (SCN) have been implicated, but the responsible mechanisms have not been clearly delineated. In this report, we characterize the progression of rhythm deterioration in mice to 900 d of age. Longitudinal behavioral and sleep–wake recordings in up to 30-month-old mice showed strong fragmentation of rhythms, starting at the age of 700 d. Patch-clamp recordings in this age group revealed deficits in membrane properties and GABAergic postsynaptic current amplitude. A selective loss of circadian modulation of fast delayed-rectifier and A-type K+ currents was observed. At the tissue level, phase synchrony of SCN neurons was grossly disturbed, with some subpopulations peaking in anti-phase and a reduction in amplitude of the overall multiunit activity rhythm. We propose that aberrant SCN rhythmicity in old animals—with electrophysiological arrhythmia at the single-cell level and phase desynchronization at the network level—can account for defective circadian function with aging.


European Journal of Neuroscience | 2010

Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network.

Johanna H. Meijer; Stephan Michel; Henk Tjebbe vanderLeest; Jos H. T. Rohling

Circadian rhythms are an essential property of many living organisms, and arise from an internal pacemaker, or clock. In mammals, this clock resides in the suprachiasmatic nucleus (SCN) of the hypothalamus, and generates an intrinsic circadian rhythm that is transmitted to other parts of the CNS. We will review the evidence that basic adaptive functions of the circadian system rely on functional plasticity in the neuronal network organization, and involve a change in phase relation among oscillatory neurons. We will illustrate this for: (i) photic entrainment of the circadian clock to the light–dark cycle; and (ii) seasonal adaptation of the clock to changes in day length. Molecular studies have shown plasticity in the phase relation between the ventral and dorsal SCN during adjustment to a shifted environmental cycle. Seasonal adaptation relies predominantly on plasticity in the phase relation between the rostral and caudal SCN. Electrical activity is integrated in the SCN, and appears to reflect the sum of the differently phased molecular expression patterns. While both photic entrainment and seasonal adaptation arise from a redistribution of SCN oscillatory activity patterns, different neuronal coupling mechanisms are employed, which are reviewed in the present paper.


PLOS ONE | 2009

Phase Shifting Capacity of the Circadian Pacemaker Determined by the SCN Neuronal Network Organization

Henk Tjebbe vanderLeest; Jos H. T. Rohling; Stephan Michel; Johanna H. Meijer

Background In mammals, a major circadian pacemaker that drives daily rhythms is located in the suprachiasmatic nuclei (SCN), at the base of the hypothalamus. The SCN receive direct light input via the retino-hypothalamic tract. Light during the early night induces phase delays of circadian rhythms while during the late night it leads to phase advances. The effects of light on the circadian system are strongly dependent on the photoperiod to which animals are exposed. An explanation for this phenomenon is currently lacking. Methodology and Principal Findings We recorded running wheel activity in C57 mice and observed large amplitude phase shifts in short photoperiods and small shifts in long photoperiods. We investigated whether these different light responses under short and long days are expressed within the SCN by electrophysiological recordings of electrical impulse frequency in SCN slices. Application of N-methyl-D-aspartate (NMDA) induced sustained increments in electrical activity that were not significantly different in the slices from long and short photoperiods. These responses led to large phase shifts in slices from short days and small phase shifts in slices from long days. An analysis of neuronal subpopulation activity revealed that in short days the amplitude of the rhythm was larger than in long days. Conclusions The data indicate that the photoperiodic dependent phase responses are intrinsic to the SCN. In contrast to earlier predictions from limit cycle theory, we observed large phase shifting responses in high amplitude rhythms in slices from short days, and small shifts in low amplitude rhythms in slices from long days. We conclude that the photoperiodic dependent phase responses are determined by the SCN and propose that synchronization among SCN neurons enhances the phase shifting capacity of the circadian system.


PLOS ONE | 2012

Amplitude of the SCN Clock Enhanced by the Behavioral Activity Rhythm

Floor van Oosterhout; Eliane A. Lucassen; Thijs Houben; Henk Tjebbe vanderLeest; Michael C. Antle; Johanna H. Meijer

Circadian rhythms are regulated by the suprachiasmatic nucleus (SCN), a small structure at the base of the hypothalamus. While light effects on the SCN are well established, little is known of behavioral effects. This study elucidates direct modulating action of behavioral activity on the SCN by use of in vivo electrophysiology recordings, assessments of general locomotor behavior, and video-tracking of mice. The results show suppression of SCN neuronal activity by spontaneous behavior, the magnitude being dependent on the intensity, duration and type of behavioral activity. The suppression was moderate (32% of circadian amplitude) for low-intensity behavior and considerable (59%) for locomotor activity. Mild manipulation of the animals had reversed effects on the SCN indicating that different mechanisms are involved in the regulatory effect of spontaneous versus induced activity. The results indicate that exercise at the proper time of the cycle can boost the amplitude of the rhythm of the SCN clock itself. This has potentially beneficial effects for other rhythmic functions that are under the control of the SCN.


Current Biology | 2012

Ultraviolet Light Provides a Major Input to Non-Image-Forming Light Detection in Mice

Floor van Oosterhout; Simon P. Fisher; Hester C. van Diepen; Thomas S. Watson; Thijs Houben; Henk Tjebbe vanderLeest; Stewart Thompson; Stuart N. Peirson; Russell G. Foster; Johanna H. Meijer

Summary The change in irradiance at dawn and dusk provides the primary cue for the entrainment of the mammalian circadian pacemaker. Irradiance detection has been ascribed largely to melanopsin-based phototransduction [1–5]. Here we examine the role of ultraviolet-sensitive (UVS) cones in the modulation of circadian behavior, sleep, and suprachiasmatic nucleus (SCN) electrical activity. UV light exposure leads to phase-shifting responses comparable to those of white light. Moreover, UV light exposure induces sleep in wild-type and melanopsin-deficient (Opn4−/−) mice with equal efficacy. Electrical recordings from the SCN of wild-type mice show that UV light elicits irradiance-dependent sustained responses that are similar to those induced by white light, with characteristic fast transient components occurring at the light transitions. These responses are retained in Opn4−/− mice and preserved under saturating photopic conditions. The sensitivity of phase-shifting responses to UV light is unaffected by the loss of rods but is severely attenuated by the additional loss of cones. Our data show that UVS cones play an important role in circadian and sleep regulation in mice.


PLOS ONE | 2011

Phase Resetting of the Mammalian Circadian Clock Relies on a Rapid Shift of a Small Population of Pacemaker Neurons

Jos H. T. Rohling; Henk Tjebbe vanderLeest; Stephan Michel; Mariska J. Vansteensel; Johanna H. Meijer

The circadian pacemaker of the suprachiasmatic nuclei (SCN) contains a major pacemaker for 24 h rhythms that is synchronized to the external light-dark cycle. In response to a shift in the external cycle, neurons of the SCN resynchronize with different pace. We performed electrical activity recordings of the SCN of rats in vitro following a 6 hour delay of the light-dark cycle and observed a bimodal electrical activity pattern with a shifted and an unshifted component. The shifted component was relatively narrow as compared to the unshifted component (2.2 h and 5.7 h, respectively). Curve fitting and simulations predicted that less than 30% of the neurons contribute to the shifted component and that their phase distribution is small. This prediction was confirmed by electrophysiological recordings of neuronal subpopulations. Only 25% of the neurons exhibited an immediate shift in the phase of the electrical activity rhythms, and the phases of the shifted subpopulations appeared significantly more synchronized as compared to the phases of the unshifted subpopulations (p<0.05). We also performed electrical activity recordings of the SCN following a 9 hour advance of the light-dark cycle. The phase advances induced a large desynchrony among the neurons, but consistent with the delays, only 19% of the neurons peaked at the mid of the new light phase. The data suggest that resetting of the central circadian pacemaker to both delays and advances is brought about by an initial shift of a relatively small group of neurons that becomes highly synchronized following a shift in the external cycle. The high degree of synchronization of the shifted neurons may add to the ability of this group to reset the pacemaker. The large desynchronization observed following advances may contribute to the relative difficulty of the circadian system to respond to advanced light cycles.


PLOS ONE | 2012

Fractal Patterns of Neural Activity Exist within the Suprachiasmatic Nucleus and Require Extrinsic Network Interactions

Kun Hu; Johanna H. Meijer; Steven Shea; Henk Tjebbe vanderLeest; Benjamin R. Pittman-Polletta; Thijs Houben; Floor van Oosterhout; Tom Deboer; Frank A. J. L. Scheer

The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ∼24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales—from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation.


Journal of Physiology-paris | 2006

Phase differences between SCN neurons and their role in photoperiodic encoding; a simulation of ensemble patterns using recorded single unit electrical activity patterns

Jos H. T. Rohling; Johanna H. Meijer; Henk Tjebbe vanderLeest; J. Admiraal

In mammals, a major circadian pacemaker is located in the suprachiasmatic nuclei (SCN), at the base of the anterior hypothalamus. The pacemaker controls daily rhythms in behavioral, physiological and endocrine functions and is synchronized to the external light-dark cycle via the retinohypothalamic tract. The SCN are also involved in photoperiodic processes. Changes in day-length are perceived by the SCN, and result in a compression or decompression of the SCN ensemble pattern, which appears to be effectuated by changes in phase relationship among oscillating neurons. By simulation experiments, we have previously shown that the duration of the single unit activity pattern is of minor importance for the broadness of the population activity peak. Instead, the phase distribution among neurons is leading to substantial differences in the broadness of the population pattern. We now show that the combination of (i) changes in the single unit activity pattern and (ii) changes in the phase distribution among oscillating neurons is also effective to encode photoperiodic information. Moreover, we simulated the ensemble waveform of the SCN with recently recorded single unit electrical activity patterns of mice under long and short photoperiods. We show that these single unit activity patterns cannot account for changes in the population waveform of the SCN unless their phase distribution is changed. A narrow distribution encodes for short photoperiods, while a wider distribution is required to encode long photoperiods. The present studies show that recorded patterns in single unit activity rhythms, measured under long and short day conditions, can be used in simulation experiments and are informative in showing which attributes of the neuronal discharge patterns leads to the capacity of the SCN to encode photoperiod.


European Journal of Neuroscience | 2013

Mechanism of bilateral communication in the suprachiasmatic nucleus

Stephan Michel; Roger Marek; Henk Tjebbe vanderLeest; Mariska J. Vansteensel; William J. Schwartz; Christopher S. Colwell; Johanna H. Meijer

The central circadian pacemaker of the suprachiasmatic nuclei (SCN) is a bilaterally symmetrical structure. Little is known about the physiological mechanisms underlying communication between the left and right SCN and yet the degree of synchronization between SCN neurons can have a critical impact on the properties of the circadian system. In this study, we used electrophysiological tools and calcium (Ca2+) imaging to examine the mechanisms underlying bilateral signaling in mouse SCN. Electrical stimulation of one SCN produced responses in the contralateral SCN with a short delay (approximately 5 ms) and Ca2+‐dependence that are consistent with action potential‐mediated chemical synaptic transmission. Patch‐clamp recordings of stimulated cells revealed excitatory postsynaptic inward‐currents (EPSCs), which were sufficient in magnitude to elicit action potentials. Electrical stimulation evoked tetrodotoxin‐dependent Ca2+ transients in about 30% of all contralateral SCN neurons recorded. The responding neurons were widely distributed within the SCN with a highest density in the posterior SCN. EPSCs and Ca2+ responses were significantly reduced after application of a glutamate receptor antagonist. Application of antagonists for receptors of other candidate transmitters inhibited the Ca2+ responses in some of the cells but overall the impact of these antagonists was variable. In a functional assay, electrical stimulation of the SCN produced phase shifts in the circadian rhythm in the frequency of multiunit activity rhythm in the contralateral SCN. These phase shifts were blocked by a glutamate receptor antagonist. Taken together, these results implicate glutamate as a transmitter required for communication between the left and right SCN.

Collaboration


Dive into the Henk Tjebbe vanderLeest's collaboration.

Top Co-Authors

Avatar

Johanna H. Meijer

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stephan Michel

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jos H. T. Rohling

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Thijs Houben

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Floor van Oosterhout

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tom Deboer

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashna Ramkisoensing

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eliane A. Lucassen

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge