Johannes G. Wittig
Brigham and Women's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes G. Wittig.
Journal of Biological Chemistry | 2014
Jacky Chung; Sheila A. Anderson; Babette Gwynn; Kathryn M. Deck; Michael J. Chen; Nathaniel B. Langer; George C. Shaw; Nicholas C. Huston; Leah F. Boyer; Sumon Datta; Prasad N. Paradkar; Liangtao Li; Zong Wei; Amy J. Lambert; Kenneth E. Sahr; Johannes G. Wittig; Wen Chen; Wange Lu; Bruno Galy; Thorsten M. Schlaeger; Matthias W. Hentze; Diane M. Ward; Jerry Kaplan; Richard S. Eisenstein; Luanne L. Peters; Barry H. Paw
Background: Heme and [Fe-S] cluster assembly are tightly regulated processes that require mitochondrial iron. Results: Loss of mitochondrial iron activates the [Fe-S]-dependent RNA-binding activity of IRP1 that inhibits protoporphyrin biosynthesis. Conclusion: IRP1 forms a critical feedback mechanism, preventing protoporphyrin accumulation under limiting mitochondrial iron conditions. Significance: This study provides evidence linking heme biogenesis to that of [Fe-S] clusters synthesis. Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant animals showed no overt signs of porphyria, suggesting that mitochondrial iron deficiency does not result in an accumulation of protoporphyrins. Here, we developed a gene trap model to provide in vitro and in vivo evidence that iron regulatory protein-1 (IRP1) inhibits protoporphyrin accumulation. Mfrn1+/gt;Irp1−/− erythroid cells exhibit a significant increase in protoporphyrin levels. IRP1 attenuates protoporphyrin biosynthesis by binding to the 5′-iron response element (IRE) of alas2 mRNA, inhibiting its translation. Ectopic expression of alas2 harboring a mutant IRE, preventing IRP1 binding, in Mfrn1gt/gt cells mimics Irp1 deficiency. Together, our data support a model whereby impaired mitochondrial [Fe-S] cluster biogenesis in Mfrn1gt/gt cells results in elevated IRP1 RNA-binding that attenuates ALAS2 mRNA translation and protoporphyrin accumulation.
Journal of Cardiovascular Development and Disease | 2016
Johannes G. Wittig; Andrea Münsterberg
The heart is the first functioning organ in the developing embryo and a detailed understanding of the molecular and cellular mechanisms involved in its formation provides insights into congenital malformations affecting its function and therefore the survival of the organism. Because many developmental mechanisms are highly conserved, it is possible to extrapolate from observations made in invertebrate and vertebrate model organisms to humans. This review will highlight the contributions made through studying heart development in avian embryos, particularly the chicken. The major advantage of chick embryos is their accessibility for surgical manipulation and functional interference approaches, both gain- and loss-of-function. In addition to experiments performed in ovo, the dissection of tissues for ex vivo culture, genomic, or biochemical approaches is straightforward. Furthermore, embryos can be cultured for time-lapse imaging, which enables tracking of fluorescently labeled cells and detailed analysis of tissue morphogenesis. Owing to these features, investigations in chick embryos have led to important discoveries, often complementing genetic studies in mice and zebrafish. As well as including some historical aspects, we cover here some of the crucial advances made in understanding early heart development using the chicken model.
eLife | 2017
Jacky Chung; Johannes G. Wittig; Alireza Ghamari; Manami Maeda; Tamara A. Dailey; Hector A. Bergonia; Martin D. Kafina; Emma E. Coughlin; Catherine E. Minogue; Alexander S. Hebert; Liangtao Li; Jerry Kaplan; Harvey F. Lodish; Daniel E. Bauer; Stuart H. Orkin; Alan Cantor; Takahiro Maeda; John D. Phillips; Joshua J. Coon; David J. Pagliarini; Harry A. Dailey; Barry H. Paw
Heme is required for survival of all cells, and in most eukaryotes, is produced through a series of eight enzymatic reactions. Although heme production is critical for many cellular processes, how it is coupled to cellular differentiation is unknown. Here, using zebrafish, murine, and human models, we show that erythropoietin (EPO) signaling, together with the GATA1 transcriptional target, AKAP10, regulates heme biosynthesis during erythropoiesis at the outer mitochondrial membrane. This integrated pathway culminates with the direct phosphorylation of the crucial heme biosynthetic enzyme, ferrochelatase (FECH) by protein kinase A (PKA). Biochemical, pharmacological, and genetic inhibition of this signaling pathway result in a block in hemoglobin production and concomitant intracellular accumulation of protoporphyrin intermediates. Broadly, our results implicate aberrant PKA signaling in the pathogenesis of hematologic diseases. We propose a unifying model in which the erythroid transcriptional program works in concert with post-translational mechanisms to regulate heme metabolism during normal development. DOI: http://dx.doi.org/10.7554/eLife.24767.001
Nature Communications | 2017
Maria-Cristina Keightley; Duncan P. Carradice; Judith E. Layton; Luke Pase; Julien Y. Bertrand; Johannes G. Wittig; Aleksandar Dakic; Andrew P. Badrock; Nicholas J. Cole; David Traver; Stephen L. Nutt; Julia McCoey; Ashley M. Buckle; Joan K. Heath; Graham J. Lieschke
In response to infection and injury, the neutrophil population rapidly expands and then quickly re-establishes the basal state when inflammation resolves. The exact pathways governing neutrophil/macrophage lineage outputs from a common granulocyte-macrophage progenitor are still not completely understood. From a forward genetic screen in zebrafish, we identify the transcriptional repressor, ZBTB11, as critical for basal and emergency granulopoiesis. ZBTB11 sits in a pathway directly downstream of master myeloid regulators including PU.1, and TP53 is one direct ZBTB11 transcriptional target. TP53 repression is dependent on ZBTB11 cys116, which is a functionally critical, metal ion-coordinating residue within a novel viral integrase-like zinc finger domain. To our knowledge, this is the first description of a function for this domain in a cellular protein. We demonstrate that the PU.1–ZBTB11–TP53 pathway is conserved from fish to mammals. Finally, Zbtb11 mutant rescue experiments point to a ZBTB11-regulated TP53 requirement in development of other organs.
Mechanisms of Development | 2017
Johannes G. Wittig; Dominique McCormick; Andrea Münsterberg
a reduced progenitor pool able to contribute to the correct growth and lengthening of the outflow tract. This suggests cardiac neural crest cells signal to the second heart field to maintain these cells in a progenitor state. Current work is focussed on dissecting the interaction between neural crest cells and the second heart field in orchestrating outflow tract development, and what signalling pathways are involved in this communication.
Blood | 2016
Jacky Chung; Johannes G. Wittig; Alireza Ghamari; Manami Maeda; Harvey F. Lodish; Daniel E. Bauer; Stuart H. Orkin; Alan Cantor; Takahiro Maeda; Harry A. Dailey; Barry H. Paw
PMC | 2015
Jacky Chung; Daniel E. Bauer; Alireza Ghamari; Christopher P. Nizzi; Kathryn M. Deck; Paul D. Kingsley; Yvette Y. Yien; Nicholas C. Huston; Chang-Zheng Chen; Iman J. Schultz; Arthur J. Dalton; Johannes G. Wittig; James Palis; Stuart H. Orkin; Richard S. Eisenstein; Alan Cantor; Barry H. Paw; Harvey F. Lodish
Blood | 2015
Jacky Chung; Johannes G. Wittig; Daniel E. Bauer; Joshua J. Coon; Dave Pagliarini; Harry A. Dailey; Harvey F. Lodish; Barry H. Paw
Journal of Biological Chemistry | 2014
Jacky Chung; Sheila A. Anderson; Babette Gwynn; Kathryn M. Deck; Michael J. Chen; Nathaniel B. Langer; George C. Shaw; Nicholas C. Huston; Leah F. Boyer; Sumon Datta; Prasad N. Paradkar; Liangtao Li; Zong Wei; Amy J. Lambert; Kenneth E. Sahr; Johannes G. Wittig; Wen Chen; Wange Lu; Bruno Galy; Thorsten M. Schlaeger; Matthias W. Hentze; Diane M. Ward; Jerry Kaplan; Richard S. Eisenstein; Luanne L. Peters; Barry H. Paw
Blood | 2014
Jacky Chung; Daniel E. Bauer; Alireza Ghamari; Christopher P. Nizzi; Kathryn M. Deck; Paul D. Kingsley; Yvette Y. Yien; Nicholas C. Huston; Caiyong Chen; Johannes G. Wittig; James Palis; Stuart H. Orkin; Harvey F. Lodish; Richard S. Eisenstein; Alan Cantor; Barry H. Paw