Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard S. Eisenstein is active.

Publication


Featured researches published by Richard S. Eisenstein.


Oncogene | 2005

CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life

Sailaja Elchuri; Terry D. Oberley; Wenbo Qi; Richard S. Eisenstein; L. Jackson Roberts; Holly Van Remmen; Charles J. Epstein; Ting-Ting Huang

Mice deficient in CuZn superoxide dismutase (CuZnSOD) showed no overt abnormalities during development and early adulthood, but had a reduced lifespan and increased incidence of neoplastic changes in the liver. Greater than 70% of Sod1−/− mice developed liver nodules that were either nodular hyperplasia or hepatocellular carcinoma (HCC). Cross-sectional studies with livers collected from Sod1−/− and age-matched +/+ controls revealed extensive oxidative damage in the cytoplasm and, to a lesser extent, in the nucleus and mitochondria from as early as 3 months of age. A marked reduction in cytosolic aconitase, increased levels of 8-oxo dG and F2-isoprostanes, and a moderate reduction in glutathione peroxidase activities and porin levels were observed in all age groups of Sod1−/− mice examined. There were also age-related reductions in Mn superoxide dismutase activities and carbonic anhydrase III. Parallel to the biochemical changes, there were progressive increases in the DNA repair enzyme APEX1, the cell cycle control proteins cyclin D1 and D3, and the hepatocyte growth factor receptor Met. Increased cell proliferation in the presence of persistent oxidative damage to macromolecules likely contributes to hepatocarcinogenesis later in life.


Biochimica et Biophysica Acta | 2012

Mammalian iron metabolism and its control by iron regulatory proteins

Cole P. Anderson; Macy Shen; Richard S. Eisenstein; Elizabeth A. Leibold

Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP-IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals.


The EMBO Journal | 2006

Iron-responsive degradation of iron-regulatory protein 1 does not require the Fe-S cluster.

Stephen L. Clarke; Aparna Vasanthakumar; Sheila A. Anderson; Corinne Pondarré; Cheryl M Koh; Kathryn M. Deck; Joseph S Pitula; Charles J. Epstein; Mark D. Fleming; Richard S. Eisenstein

The generally accepted role of iron‐regulatory protein 1 (IRP1) in orchestrating the fate of iron‐regulated mRNAs depends on the interconversion of its cytosolic aconitase and RNA‐binding forms through assembly/disassembly of its Fe–S cluster, without altering protein abundance. Here, we show that IRP1 protein abundance can be iron‐regulated. Modulation of IRP1 abundance by iron did not require assembly of the Fe–S cluster, since a mutant with all cluster‐ligating cysteines mutated to serine underwent iron‐induced protein degradation. Phosphorylation of IRP1 at S138 favored the RNA‐binding form and promoted iron‐dependent degradation. However, phosphorylation at S138 was not required for degradation. Further, degradation of an S138 phosphomimetic mutant was not blocked by mutation of cluster‐ligating cysteines. These findings were confirmed in mouse models with genetic defects in cytosolic Fe–S cluster assembly/disassembly. IRP1 RNA‐binding activity was primarily regulated by IRP1 degradation in these animals. Our results reveal a mechanism for regulating IRP1 action relevant to the control of iron homeostasis during cell proliferation, inflammation, and in response to diseases altering cytosolic Fe–S cluster assembly or disassembly.


Blood | 2011

Suppression of hepatic hepcidin expression in response to acute iron deprivation is associated with an increase of matriptase-2 protein

An Sheng Zhang; Sheila A. Anderson; Jiaohong Wang; Fan Yang; Kristina DeMaster; Riffat Ahmed; Christopher P. Nizzi; Richard S. Eisenstein; Hidekazu Tsukamoto; Caroline A. Enns

Recent studies demonstrate a pivotal role for bone morphogenic protein-6 (BMP6) and matriptase-2, a protein encoded by the TMPRSS6 gene, in the induction and suppression of hepatic hepcidin expression, respectively. We examined their expression profiles in the liver and showed a predominant localization of BMP6 mRNA in nonparenchymal cells and exclusive expression of TMPRSS6 mRNA in hepatocytes. In rats fed an iron-deficient (ID) diet for 24 hours, the rapid decrease of transferrin saturation from 71% to 24% (control vs ID diet) was associated with a 100-fold decrease in hepcidin mRNA compared with the corresponding controls. These results indicated a close correlation of low transferrin saturation with decreased hepcidin mRNA. The lower phosphorylated Smad1/5/8 detected in the ID rat livers suggests that the suppressed hepcidin expression results from the inhibition of BMP signaling. Quantitative real-time reverse transcription polymerase chain reaction analysis revealed no significant change in either BMP6 or TMPRSS6 mRNA in the liver. However, an increase in matriptase-2 protein in the liver from ID rats was detected, suggesting that suppression of hepcidin expression in response to acute iron deprivation is mediated by an increase in matriptase-2 protein levels.


Journal of Nutrition | 2003

Novel Roles for Iron Regulatory Proteins in the Adaptive Response to Iron Deficiency

Richard S. Eisenstein; Kerry L. Ross

Iron regulatory proteins (IRP) modulate the use of mRNA-encoding proteins that are involved in the transport, storage and use of iron. Several new potential mRNA targets for IRP were recently identified: divalent metal transporter-1 (DMT-1) and ferroportin, which are critical regulators of iron absorption in the gut and of iron cycling between various tissues of the body. Although this may extend the reach of IRP to other processes that are important for maintaining body iron homeostasis, the extent to which IRP modulate other physiological processes that are altered in response to changes in iron availability is not clear. However, in the past several years, targets for IRP and IRP-like proteins were identified in eukaryotes and prokaryotes in the tricarboxylic acid (TCA) cycle and electron-transport chain. In mammals, this includes the mRNA that encodes the TCA-cycle enzyme mitochondrial aconitase (m-acon). Recent work established that m-acon expression is translationally regulated by iron in a manner that is strongly correlated with IRP RNA-binding activity. Interestingly, these studies also demonstrate that IRP regulate their mRNA targets in a hierarchical manner. The changes in m-acon synthesis and abundance in liver during iron deficiency fail to affect TCA-cycle capacity but are associated with a significant upregulation of mitochondrial export of radiolabeled citrate. We conclude that IRP are required for the regulation of physiological pathways that include but are not limited to iron metabolism, and as such, IRP are critical factors in the adaptive response to iron deficiency.


Journal of Biological Chemistry | 2008

An Iron Responsive Element-like Stem-Loop Regulates α-Hemoglobin-stabilizing Protein mRNA

Camila O. dos Santos; Louis C. Dore; Eric Valentine; Suresh G. Shelat; Ross C. Hardison; Manik C. Ghosh; Wei Wang; Richard S. Eisenstein; Fernando Ferreira Costa; Mitchell J. Weiss

Hemoglobin production during erythropoiesis is mechanistically coupled to the acquisition and metabolism of iron. We discovered that iron regulates the expression of α-hemoglobin-stabilizing protein (AHSP), a molecular chaperone that binds and stabilizes free α-globin during hemoglobin synthesis. In primates, the 3′-untranslated region (UTR) of AHSP mRNA contains a nucleotide sequence resembling iron responsive elements (IREs), stem-loop structures that regulate gene expression post-transcriptionally by binding iron regulatory proteins (IRPs). The AHSP IRE-like stem-loop deviates from classical consensus sequences and binds IRPs poorly in electrophoretic mobility shift assays. However, in cytoplasmic extracts, AHSP mRNA co-immunoprecipitates with IRPs in a fashion that is dependent on the stem-loop structure and inhibited by iron. Moreover, this interaction enhances AHSP mRNA stability in erythroid and heterologous cells. Our findings demonstrate that IRPs can regulate mRNA expression through non-canonical IREs and extend the repertoire of known iron-regulated genes. In addition, we illustrate a new mechanism through which hemoglobin may be modulated according to iron status.


Journal of Cellular Physiology | 2002

Increased IRP1 and IRP2 RNA binding activity accompanies a reduction of the labile iron pool in HFE-expressing cells*

Cindy N. Roy; Kenneth P. Blemings; Kathryn M. Deck; Paige S. Davies; Emily L. Anderson; Richard S. Eisenstein; Caroline A. Enns

Iron regulatory proteins (IRPs), the cytosolic proteins involved in the maintenance of cellular iron homeostasis, bind to stem loop structures found in the mRNA of key proteins involved iron uptake, storage, and metabolism and regulate the expression of these proteins in response to changes in cellular iron needs. We have shown previously that HFE‐expressing fWTHFE/tTA HeLa cells have slightly increased transferrin receptor levels and dramatically reduced ferritin levels when compared to the same clonal cell line without HFE (Gross et al., 1998 , J Biol Chem 273:22068‐22074). While HFE does not alter transferrin receptor trafficking or non‐transferrin mediated iron uptake, it does specifically reduce 55Fe uptake from transferrin (Roy et al., 1999 , J Biol Chem 274:9022–9028). In this report, we show that IRP RNA binding activity is increased by up to 5‐fold in HFE‐expressing cells through the activation of both IRP isoforms. Calcein measurements show a 45% decrease in the intracellular labile iron pool in HFE‐expressing cells, which is in keeping with the IRP activation. These results all point to the direct effect of the interaction of HFE with transferrin receptor in lowering the intracellular labile iron pool and establishing a new set point for iron regulation within the cell. J. Cell. Physiol. 190: 218–226, 2002.


Journal of Biological Chemistry | 2013

F-box and Leucine-rich Repeat Protein 5 (FBXL5) Is Required for Maintenance of Cellular and Systemic Iron Homeostasis

Julio C. Ruiz; Scott D. Walker; Sheila A. Anderson; Richard S. Eisenstein; Richard K. Bruick

Background: FBXL5 is an iron-responsive E3 ubiquitin ligase. Results: FBXL5-null mice die during embryogenesis, whereas Fbxl5 heterozygotes perform better than wild type littermates when fed a low iron diet due to enhanced iron absorption. Conclusion: FBXL5 plays an essential role in the in vivo maintenance of cellular and systemic iron homeostasis. Significance: FBXL5 is an essential physiological iron sensor. Maintenance of cellular iron homeostasis requires post-transcriptional regulation of iron metabolism genes by iron regulatory protein 2 (IRP2). The hemerythrin-like domain of F-box and leucine-rich repeat protein 5 (FBXL5), an E3 ubiquitin ligase subunit, senses iron and oxygen availability and facilitates IRP2 degradation in iron replete cells. Disruption of the ubiquitously expressed murine Fbxl5 gene results in a failure to sense increased cellular iron availability, accompanied by constitutive IRP2 accumulation and misexpression of IRP2 target genes. FBXL5-null mice die during embryogenesis, although viability is restored by simultaneous deletion of the IRP2, but not IRP1, gene. Mice containing a single functional Fbxl5 allele behave like their wild type littermates when fed an iron-sufficient diet. However, unlike wild type mice that manifest decreased hematocrit and hemoglobin levels when fed a low-iron diet, Fbxl5 heterozygotes maintain normal hematologic values due to increased iron absorption. The responsiveness of IRP2 to low iron is specifically enhanced in the duodena of the heterozygotes and is accompanied by increased expression of the divalent metal transporter-1. These results confirm the role of FBXL5 in the in vivo maintenance of cellular and systemic iron homeostasis and reveal a privileged role for the intestine in their regulation by virtue of its unique FBXL5 iron sensitivity.


Journal of Biological Chemistry | 2009

Evidence that phosphorylation of iron regulatory protein 1 at Serine 138 destabilizes the [4Fe-4S] cluster in cytosolic aconitase by enhancing 4Fe-3Fe cycling.

Kathryn M. Deck; Aparna Vasanthakumar; Sheila A. Anderson; Jeremy B. Goforth; M. Claire Kennedy; William E. Antholine; Richard S. Eisenstein

Iron-sulfur cluster-dependent interconversion of iron regulatory protein 1 (IRP1) between its RNA binding and cytosolic aconitase (c-acon) forms controls vertebrate iron homeostasis. Cluster removal from c-acon is thought to include oxidative demetallation as a required step, but little else is understood about the process of conversion to IRP1. In comparison with c-aconWT, Ser138 phosphomimetic mutants of c-acon contain an unstable [4Fe-4S] cluster and were used as tools to further define the pathway(s) of iron-sulfur cluster disassembly. Under anaerobic conditions cluster insertion into purified IRP1S138E and cluster loss on treatment with NO regulated aconitase and RNA binding activity over a similar range as observed for IRP1WT. However, activation of RNA binding of c-aconS138E was an order of magnitude more sensitive to NO than for c-aconWT. Consistent with this, an altered set point between RNA-binding and aconitase forms was observed for IRP1S138E when expressed in HEK cells. Active c-aconS138E could only accumulate under hypoxic conditions, suggesting enhanced cluster disassembly in normoxia. Cluster disassembly mechanisms were further probed by determining the impact of iron chelation on acon activity. Unexpectedly EDTA rapidly inhibited c-aconS138E activity without affecting c-aconWT. Additional chelator experiments suggested that cluster loss can be initiated in c-aconS138E through a spontaneous nonoxidative demetallation process. Taken together, our results support a model wherein Ser138 phosphorylation sensitizes IRP1/c-acon to decreased iron availability by allowing the [4Fe-4S]2+ cluster to cycle with [3Fe-4S]0 in the absence of cluster perturbants, indicating that regulation can be initiated merely by changes in iron availability.


Journal of Biological Chemistry | 2015

Low Intracellular Iron Increases the Stability of Matriptase-2

Ningning Zhao; Christopher P. Nizzi; Sheila A. Anderson; Jiaohong Wang; Akikok Ueno; Hidekazu Tsukamoto; Richard S. Eisenstein; Caroline A. Enns; An-Sheng Zhang

Background: Matriptase-2 (MT2) is essential for iron homeostasis. The mechanism for its regulation is controversial. Results: The cytoplasmic domain of MT2 is necessary for its stabilization by iron depletion. MT2 expression is not regulated at either the transcriptional mRNA or translational level by iron. Conclusion: Depletion of cellular iron stabilizes MT2. Significance: Low iron levels in hepatocytes stabilize MT2 to suppress hepcidin expression. Matriptase-2 (MT2) is a type II transmembrane serine protease that is predominantly expressed in hepatocytes. It suppresses the expression of hepatic hepcidin, an iron regulatory hormone, by cleaving membrane hemojuvelin into an inactive form. Hemojuvelin is a bone morphogenetic protein (BMP) co-receptor. Here, we report that MT2 is up-regulated under iron deprivation. In HepG2 cells stably expressing the coding sequence of the MT2 gene, TMPRSS6, incubation with apo-transferrin or the membrane-impermeable iron chelator, deferoxamine mesylate salt, was able to increase MT2 levels. This increase did not result from the inhibition of MT2 shedding from the cells. Rather, studies using a membrane-permeable iron chelator, salicylaldehyde isonicotinoyl hydrazone, revealed that depletion of cellular iron was able to decrease the degradation of MT2 independently of internalization. We found that lack of the putative endocytosis motif in its cytoplasmic domain largely abolished the sensitivity of MT2 to iron depletion. Neither acute nor chronic iron deficiency was able to alter the association of Tmprss6 mRNA with polyribosomes in the liver of rats indicating a lack of translational regulation by low iron levels. Studies in mice showed that Tmprss6 mRNA was not regulated by iron nor the BMP-mediated signaling with no evident correlation with either Bmp6 mRNA or Id1 mRNA, a target of BMP signaling. These results suggest that regulation of MT2 occurs at the level of protein degradation rather than by changes in the rate of internalization and translational or transcriptional mechanisms and that the cytoplasmic domain of MT2 is necessary for its regulation.

Collaboration


Dive into the Richard S. Eisenstein's collaboration.

Top Co-Authors

Avatar

Sheila A. Anderson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kathryn M. Deck

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Christopher P. Nizzi

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kevin L. Schalinske

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

M. Claire Kennedy

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Alfred E. Harper

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Aparna Vasanthakumar

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Barry H. Paw

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes G. Wittig

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge