Johannes Ledig
Braunschweig University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes Ledig.
ACS Applied Materials & Interfaces | 2014
Lorenzo Caccamo; Jana Hartmann; Cristian Fàbrega; S. Estradé; G. Lilienkamp; Joan Daniel Prades; Martin W. G. Hoffmann; Johannes Ledig; Alexander Wagner; Xue Wang; Lluís López-Conesa; F. Peiró; José Manuel Rebled; H.-H. Wehmann; W. Daum; Hao Shen; A. Waag
3D single-crystalline, well-aligned GaN-InGaN rod arrays are fabricated by selective area growth (SAG) metal-organic vapor phase epitaxy (MOVPE) for visible-light water splitting. Epitaxial InGaN layer grows successfully on 3D GaN rods to minimize defects within the GaN-InGaN heterojunctions. The indium concentration (In ∼ 0.30 ± 0.04) is rather homogeneous in InGaN shells along the radial and longitudinal directions. The growing strategy allows us to tune the band gap of the InGaN layer in order to match the visible absorption with the solar spectrum as well as to align the semiconductor bands close to the water redox potentials to achieve high efficiency. The relation between structure, surface, and photoelectrochemical property of GaN-InGaN is explored by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES), current-voltage, and open circuit potential (OCP) measurements. The epitaxial GaN-InGaN interface, pseudomorphic InGaN thin films, homogeneous and suitable indium concentration and defined surface orientation are properties demanded for systematic study and efficient photoanodes based on III-nitride heterojunctions.
Applied Physics Letters | 2012
Shunfeng Li; Xue Wang; Sönke Fündling; Milena Erenburg; Johannes Ledig; Jiandong Wei; Hergo H. Wehmann; A. Waag; Werner Bergbauer; Martin Mandl; Martin Strassburg; Achim Trampert; Uwe Jahn; H. Riechert; H. Jönen; A. Hangleiter
Homogeneous nitrogen-polar GaN core-shell light emitting diode (LED) arrays were fabricated by selective area growth on patterned substrates. Transmission electron microscopy measurements prove the core-shell structure of the rod LEDs. Depending on the growth facets, the InGaN/GaN multi-quantum wells (MQWs) show different dimensions and morphology. Cathodoluminescence (CL) measurements reveal a MQWs emission centered at about 415 nm on sidewalls and another emission at 460 nm from top surfaces. CL line scans on cleaved rod also indicate the core-shell morphology. Finally, an internal quantum efficiency of about 28% at room temperature was determined by an all-optical method on a LED array.
Proceedings of SPIE | 2012
Friedhard Römer; Marcus Deppner; Zhelio Andreev; Christopher Kölper; Matthias Sabathil; Martin Strassburg; Johannes Ledig; Shunfeng Li; A. Waag; Bernd Witzigmann
We present a computational study on the anisotropic luminescence and the efficiency of a core-shell type nanowire LED based on GaN with InGaN active quantum wells. The physical simulator used for analyzing this device integrates a multidimensional drift-diffusion transport solver and a k · p Schr¨odinger problem solver for quantization effects and luminescence. The solution of both problems is coupled to achieve self-consistency. Using this solver we investigate the effect of dimensions, design of quantum wells, and current injection on the efficiency and luminescence of the core-shell nanowire LED. The anisotropy of the luminescence and re-absorption is analyzed with respect to the external efficiency of the LED. From the results we derive strategies for design optimization.
Nanotechnology | 2016
Thilo Krause; M. Hanke; Zongzhe Cheng; Michael Niehle; Achim Trampert; Martin Rosenthal; Manfred Burghammer; Johannes Ledig; Jana Hartmann; Hao Zhou; H.-H. Wehmann; A. Waag
Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.
Applied Physics Letters | 2016
Matin Sadat Mohajerani; S. Khachadorian; Tilman Schimpke; Christian Nenstiel; Jana Hartmann; Johannes Ledig; Adrian Avramescu; Martin Strassburg; A. Hoffmann; A. Waag
Three-dimensional III-nitride micro-structures are being developed as a promising candidate for the future opto-electrical devices. In this study, we demonstrate a quick and straight-forward method to locally evaluate free-carrier concentrations and a crystalline quality in individual GaN:Si micro-rods. By employing micro-Raman mapping and analyzing lower frequency branch of A1(LO)- and E1(LO)-phonon-plasmon-coupled modes (LPP–), the free carrier concentrations are determined in axial and planar configurations, respectively. Due to a gradual doping profile along the micro-rods, a highly spatially resolved mapping on the sidewall is exploited to reconstruct free carrier concentration profile along the GaN:Si micro-rods. Despite remarkably high free carrier concentrations above 1 × 1020 cm−3, the micro-rods reveal an excellent crystalline quality, without a doping-induced stress.
2011 Semiconductor Conference Dresden | 2011
Marcus Deppner; Friedhard Römer; Bernd Witzigmann; Johannes Ledig; Richard Neumann; A. Waag; Werner Bergbauer; Martin Strassburg
We report on the computational analysis of a core-shell GaN/InGaN nanowire LED with a capped pyramidal top. The active region consists of a polar multi quantum well (MQW) at the top, a non-polar MQW along the lateral face and a semi-polar one joining them. Differences in the opto-electronic characteristics of the three crystal orientations can be examined, arising from polarization effects as well as the strain-induced bandedge shift. Furthermore the influence of carrier injection efficiency in a nanowire is investigated.
Proceedings of SPIE | 2014
Alexander Wagner; Mathieu Stahl; Nikolai Ehrhardt; Andreas Fahl; Johannes Ledig; A. Waag; A. Bakin
Energy conversion technologies are aiming to extremely high power capacities per year. Nontoxicity and abundance of the materials are the key requirements to a sustainable photovoltaic technology. Oxides are among the key materials to reach these goals. We investigate the influence of thin buffer layers on the performance of an ZnO:Al/buffer/Cu2O solar cells. Introduction of a thin ZnO or Al2O3 buffer layer, grown by thermal ALD, between ZnO:Al and Cu2O resulted in 45% increase of the solar cell efficiency. VPE growth of Cu2O employing elemental copper and pure oxygen as precursor materials is presented. The growth is performed on MgO substrates with the (001) orientation. On- and off- oriented substrates have been employed and the growth results are compared. XRD investigations show the growth of the (110) oriented Cu2O for all temperatures, whereas at a high substrate temperature additional (001) Cu2O growth occurs. An increase of the oxygen partial pressure leads to a more pronounced 2D growth mode, whereby pores between the islands still remain. The implementation of off-axis substrates with 3.5° and 5° does not lead to an improvement of the layer quality. The (110) orientation remains predominant, the grain size decreases and the FWHM of the (220) peak increases. From the AFM images it is concluded, that the (110) surface grows with a tilt angle to the substrate surface.
Proceedings of SPIE | 2016
Tilman Schimpke; Hans-Juergen Lugauer; Adrian Stefan Avramescu; Tansen Varghese; Andreas Koller; Jana Hartmann; Johannes Ledig; A. Waag; Martin Strassburg
Today’s InGaN-based white LEDs still suffer from a significant efficiency reduction at elevated current densities, the so-called “Droop”. Core-shell microrods, with quantum wells (QWs) covering their entire surface, enable a tremendous increase in active area scaling with the rod’s aspect ratio. Enlarging the active area on a given footprint area is a viable and cost effective route to mitigate the droop by effectively reducing the local current density. Microrods were grown in a large volume metal-organic vapor phase epitaxy (MOVPE) reactor on GaN-on-sapphire substrates with a thin, patterned SiO2 mask for position control. Out of the mask openings, pencil-shaped n-doped GaN microrod cores were grown under conditions favoring 3D growth. In a second growth step, these cores are covered with a shell containing a quantum well and a p-n junction to form LED structures. The emission from the QWs on the different facets was studied using resonant temperature-dependent photoluminescence (PL) and cathodoluminescence (CL) measurements. The crystal quality of the structures was investigated by transmission electron microscopy (TEM) showing the absence of extended defects like threading dislocations in the 3D core. In order to fabricate LED chips, dedicated processes were developed to accommodate for the special requirements of the 3D geometry. The electrical and optical properties of ensembles of tens of thousands microrods connected in parallel are discussed.
Journal of Applied Physics | 2017
Manal Ali Deeb; Johannes Ledig; Jiandong Wei; Xue Wang; H.-H. Wehmann; A. Waag
Three dimensional GaN structures with different crystal facets and doping types have been investigated employing the surface photo-voltage (SPV) method to monitor illumination-induced surface charge behavior using Kelvin probe force microscopy. Various photon energies near and below the GaN bandgap were used to modify the generation of electron–hole pairs and their motion under the influence of the electric field near the GaN surface. Fast and slow processes for Ga-polar c-planes on both Si-doped n-type as well as Mg-doped p-type GaN truncated pyramid micro-structures were found and their origin is discussed. The immediate positive (for n-type) and negative (for p-type) SPV response dominates at band-to-band and near-bandgap excitation, while only the slow process is present at sub-bandgap excitation. The SPV behavior for the semi-polar facets of the p-type GaN truncated pyramids has a similar characteristic to that on its c-plane, which indicates that it has a comparable band bending and no strong influe...
photonics society summer topical meeting series | 2016
A. Waag; Jana Hartmann; Hao Zhou; Sönke Fündling; Johannes Ledig; Frederik Steib; Matin Sadat Mohajerani; H.-H. Wehmann; Daniel Bichler; Barbara Huckenbeck; Tilman Schimpke; Martin Mandl; A. Achimescu; Ion Stoll; Martin Strassburg; H.-J. Lugauer
Summary form only given. GaN nanorods and related high aspect ratio 3D GaN nanostructures recently attracted a lot of attention since they are expected to be an exciting new route towards extending the freedom for device design in GaN technology. Such structures offer large surfaces, defect free high quality material, as well as non-polar surface orientations, including the possibility to use very large area foreign substrates without implementing large area strain. All of these aspects are difficult or impossible to achieve when planar substrate approaches are used. Meanwhile, such 3D high aspect ratio GaN based nanostructures can reproducibly be fabricated with high aspect ratios and good homogeneity, and more and more device and application aspects are under investigation.Details on the MOCVD growth of such high aspect ratio structures will be given, and the influence of growth parameters (and particularly the silicon doping) on the properties of the quantum wells will be discussed. Silicon is shown to lead to passivation effects at m-plane sidewall surfaces, which hinder the high quality growth of InGaN quantum wells. Strategies to circumvent this problem will be discussed, leading to InGaN quantum wells with PL-IQE values of 60% at room temperature. This talk will give an overview on the state of the art of our 3D GaN research, pointing out the necessity for further epitaxy related research, but also describing the increasingly interesting demonstration of 3D devices and their substantial potential for solid state lighting.