Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Barras is active.

Publication


Featured researches published by John A. Barras.


Journal of Coastal Research | 2011

Hurricane Impacts on Coastal Wetlands: A Half-Century Record of Storm-Generated Features from Southern Louisiana

Robert A. Morton; John A. Barras

Abstract Temporally and spatially repeated patterns of wetland erosion, deformation, and deposition are observed on remotely sensed images and in the field after hurricanes cross the coast of Louisiana. The diagnostic morphological wetland features are products of the coupling of high-velocity wind and storm-surge water and their interaction with the underlying, variably resistant, wetland vegetation and soils. Erosional signatures include construction of orthogonal-elongate ponds and amorphous ponds, pond expansion, plucked marsh, marsh denudation, and shoreline erosion. Post-storm gravity reflux of floodwater draining from the wetlands forms dendritic incisions around the pond margins and locally integrates drainage pathways forming braided channels. Depositional signatures include emplacement of broad zones of organic wrack on topographic highs and inorganic deposits of variable thicknesses and lateral extents in the form of shore-parallel sandy washover terraces and interior-marsh mud blankets. Deformational signatures primarily involve laterally compressed marsh and displaced marsh mats and balls. Prolonged water impoundment and marsh salinization also are common impacts associated with wetland flooding by extreme storms. Many of the wetland features become legacies that record prior storm impacts and locally influence subsequent storm-induced morphological changes. Wetland losses caused by hurricane impacts depend directly on impact duration, which is controlled by the diameter of hurricane-force winds, forward speed of the storm, and wetland distance over which the storm passes. Distinguishing between wetland losses caused by storm impacts and losses associated with long-term delta-plain processes is critical for accurate modeling and prediction of future conversion of land to open water.


International Journal of Remote Sensing | 2005

Applications of Radarsat‐1 synthetic aperture radar imagery to assess hurricane‐related flooding of coastal Louisiana

Lawrence M. Kiage; Nan D. Walker; Shreekanth Balasubramanian; Adele Babin; John A. Barras

The Louisiana coast is subjected to hurricane impacts including flooding of human settlements, river channels and coastal marshes, and salt water intrusion. Information on the extent of flooding is often required quickly for emergency relief, repairs of infrastructure, and production of flood risk maps. This study investigates the feasibility of using Radarsat‐1 SAR imagery to detect flooded areas in coastal Louisiana after Hurricane Lili, October 2002. Arithmetic differencing and multi‐temporal enhancement techniques were employed to detect flooding and to investigate relationships between backscatter and water level changes. Strong positive correlations (R 2 = 0.7–0.94) were observed between water level and SAR backscatter within marsh areas proximate to Atchafalaya Bay. Although variations in elevation and vegetation type did influence and complicate the radar signature at individual sites, multi‐date differences in backscatter largely reflected the patterns of flooding within large marsh areas. Preliminary analyses show that SAR imagery was not useful in mapping urban flooding in New Orleans after Hurricane Katrinas landfall on 29 August 2005.


Journal of Coastal Research | 2013

Land Loss Due to Recent Hurricanes in Coastal Louisiana, U.S.A.

Monica Palaseanu-Lovejoy; Christine J. Kranenburg; John A. Barras; John C. Brock

ABSTRACT Palaneasu-Lovejoy, M.; Kranenburg, C.; Barras, J.A., and Brock, J.C., 2013. Land loss due to recent hurricanes in coastal Louisiana, U.S.A.. In: Brock, J.C.; Barras, J.A., and Williams, S.J. (eds.), Understanding and Predicting Change in the Coastal Ecosystems of the Northern Gulf of Mexico, Journal of Coastal Research, Special Issue No. 63, pp. 97–109, Coconut Creek (Florida), ISSN 0749-0208. The aim of this study is to improve estimates of wetland land loss in two study regions of coastal Louisiana, U.S.A., due to the extreme storms that impacted the region between 2004 and 2009. The estimates are based on change-detection-mapping analysis that incorporates pre and postlandfall (Hurricanes Katrina, Rita, Gustav, and Ike) fractional-water classifications using a combination of high-resolution (<5 m) QuickBird, IKONOS, and GeoEye-1, and medium-resolution (30 m) Landsat Thematic Mapper satellite imagery. This process was applied in two study areas: the Hackberry area located in the southwestern part of chenier plain that was impacted by Hurricanes Rita (September 24, 2005) and Ike (September 13, 2008), and the Delacroix area located in the eastern delta plain that was impacted by Hurricanes Katrina (August 29, 2005) and Gustav (September 1, 2008). In both areas, effects of the hurricanes include enlargement of existing bodies of open water and erosion of fringing marsh areas. Surge-removed marsh was easily identified in stable marshes but was difficult to identify in degraded or flooded marshes. Persistent land loss in the Hackberry area due to Hurricane Rita was approximately 5.8% and increased by an additional 7.9% due to Hurricane Ike, although this additional area may yet recover. About 80% of the Hackberry study area remained unchanged since 2003. In the Delacroix area, persistent land loss due to Hurricane Katrina measured approximately 4.9% of the study area, while Hurricane Gustav caused minimal impact of 0.6% land loss by November 2009. Continued recovery in this area may further erase Hurricane Gustavs impact in the absence of new storm events.


Wetlands | 2009

Identifying baldcypress-water tupelo regeneration classes in forested wetlands of the Atchafalaya Basin, Louisiana.

Stephen P. Faulkner; Prajwol Bhattarai; Yvonne C. Allen; John A. Barras; Glenn C. Constant

Baldcypress-water tupelo (cypress-tupelo) swamps are critically important coastal forested wetlands found throughout the southeastern U.S. The long-term survival and sustainability of these swamp forests is unknown due to large-scale changes in hydrologic regimes that prevent natural regeneration following logging or mortality. We used NWI wetland maps and remotely sensed hydrologic data to map cypress-tupelo communities, surface water, and the extent and location of proposed regeneration condition classes for cypress-tupelo swamps in the Atchafalaya Basin, LA. Only 6,175 ha (5.8%) of the 106,227 ha of cypress-tupelo forest in the Lower Atchafalaya Basin Floodway was classified as capable of naturally regenerating. Over 23% (24,525 ha) of the forest area was mapped as unable to regenerate either naturally or artificially. The loss and conversion of nearly 25,000 ha of cypress-tupelo forest would have significant and long-lasting impacts on ecosystem services such as wildlife habitat for birds and Louisiana black bears. Given the landscape-scale changes in surface elevations and flooding depths and durations throughout southern Louisiana, similar conditions and impacts are likely applicable to all coastal cypress-tupelo forests in Louisiana. Better data on flooding during the growing season are needed to more accurately identify and refine the location and spatial extent of the regeneration condition classes.


Journal of Coastal Research | 2013

Monitoring Vegetation Response to Episodic Disturbance Events by using Multitemporal Vegetation Indices

Gregory D. Steyer; Brady R. Couvillion; John A. Barras

ABSTRACT Steyer, G.D.; Couvillion, B.R., and Barras, J.A., 2013. Monitoring vegetation response to episodic disturbance events by using multitemporal vegetation indices In: Brock, J.C.; Barras, J.A., and Williams, S.J. (eds.), Understanding and Predicting Change in the Coastal Ecosystems of the Northern Gulf of Mexico, Journal of Coastal Research, Special Issue No. 63, pp. 118–130, Coconut Creek (Florida), ISSN 0749-0208. Normalized Difference Vegetation Index (NDVI) derived from MODerate-resolution Imaging Spectroradiometer (MODIS) satellite imagery and land/water assessments from Landsat Thematic Mapper (TM) imagery were used to quantify the extent and severity of damage and subsequent recovery after Hurricanes Katrina and Rita of 2005 within the vegetation communities of Louisianas coastal wetlands. Field data on species composition and total live cover were collected from 232 unique plots during multiple time periods to corroborate changes in NDVI values over time. Aprehurricane 5-year baseline time series clearly identified NDVI values by habitat type, suggesting the sensitivity of NDVI to assess and monitor phenological changes in coastal wetland habitats. Monthly data from March 2005 to November 2006 were compared to the baseline average to create a departure from average statistic. Departures suggest that over 33% (4,714 km2) of the prestorm, coastal wetlands experienced a substantial decline in the density and vigor of vegetation by October 2005 (poststorm), mostly in the east and west regions, where landfalls of Hurricanes Katrina and Rita occurred. The percentage of area of persistent vegetation damage due to long-lasting formation of new open water was 91.8% in the east and 81.0% and 29.0% in the central and west regions, respectively. Although below average NDVI values were observed in most marsh communities through November 2006, recovery of vegetation was evident. Results indicated that impacts and recovery from large episodic disturbance events that influence multiple habitat types can be accurately determined using NDVI, especially when integrated with assessments of physical landscape changes and field verifications.


Journal of Coastal Research | 2016

Topobathymetric elevation model development using a new methodology: Coastal National Elevation Database

Jeffrey J. Danielson; Sandra K. Poppenga; John C. Brock; Gayla A. Evans; Dean J. Tyler; Dean B. Gesch; Cindy A. Thatcher; John A. Barras

ABSTRACT Danielson, J.J.; Poppenga, S.K.; Brock, J.C.; Evans, G.A.; Tyler, D.J.; Gesch, D.B.; Thatcher, C.A., and Barras, J.A., 2016. Topobathymetric elevation model development using a new methodology: Coastal National Elevation Database. In: Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., and Wright, C.W. (eds.), Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal Research, Special Issue, No. 76, pp. 75–89. Coconut Creek (Florida), ISSN 0749-0208. During the coming decades, coastlines will respond to widely predicted sea-level rise, storm surge, and coastal inundation flooding from disastrous events. Because physical processes in coastal environments are controlled by the geomorphology of over-the-land topography and underwater bathymetry, many applications of geospatial data in coastal environments require detailed knowledge of the near-shore topography and bathymetry. In this paper, an updated methodology used by the U.S. Geological Survey Coastal National Elevation Database (CoNED) Applications Project is presented for developing coastal topobathymetric elevation models (TBDEMs) from multiple topographic data sources with adjacent intertidal topobathymetric and offshore bathymetric sources to generate seamlessly integrated TBDEMs. This repeatable, updatable, and logically consistent methodology assimilates topographic data (land elevation) and bathymetry (water depth) into a seamless coastal elevation model. Within the overarching framework, vertical datum transformations are standardized in a workflow that interweaves spatially consistent interpolation (gridding) techniques with a land/water boundary mask delineation approach. Output gridded raster TBDEMs are stacked into a file storage system of mosaic datasets within an Esri ArcGIS geodatabase for efficient updating while maintaining current and updated spatially referenced metadata. Topobathymetric data provide a required seamless elevation product for several science application studies, such as shoreline delineation, coastal inundation mapping, sediment-transport, sea-level rise, storm surge models, and tsunami impact assessment. These detailed coastal elevation data are critical to depict regions prone to climate change impacts and are essential to planners and managers responsible for mitigating the associated risks and costs to both human communities and ecosystems. The CoNED methodology approach has been used to construct integrated TBDEM models in Mobile Bay, the northern Gulf of Mexico, San Francisco Bay, the Hurricane Sandy region, and southern California.


Journal of Coastal Research | 2013

Introduction to the special issue on “Understanding and predicting change in the coastal ecosystems of the northern Gulf of Mexico”

John C. Brock; John A. Barras; S. Jeffress Williams

ABSTRACT Brock, J.C.; Barras, J.A., and Williams, S.J., 2013. Introduction to the Special Issue on “Understanding and Predicting Change in the Coastal Ecosystems of the Northern Gulf of Mexico”. In: Brock, J.C.; Barras, J.A., and Williams, S.J. (eds.), Understanding and Predicting Change in the Coastal Ecosystems of the Northern Gulf of Mexico, Journal of Coastal Research, Special Issue No. 63, pp. 1–5. Coconut Creek (Florida), ISSN 0749-0208. The coastal region of the northern Gulf of Mexico owes its current landscape structure to an array of tectonic, erosional and depositional, climatic, geochemical, hydrological, ecological, and human processes that have resulted in some of the worlds most complex, dynamic, productive, and threatened ecosystems. Catastrophic hurricane landfalls, ongoing subsidence and erosion exacerbated by sea-level rise, disintegration of barrier island chains, and high rates of wetland loss have called attention to the vulnerability of northern Gulf coast ecosystems, habitats, built infrastructure, and economy to natural and anthropogenic threats. The devastating hurricanes of 2005 (Katrina and Rita) motivated the U.S. Geological Survey Coastal and Marine Geology Program and partnering researchers to pursue studies aimed at understanding and predicting landscape change and the associated storm hazard vulnerability of northern Gulf coast region ecosystems and human communities. Attaining this science goal requires increased knowledge of landscape evolution on geologic, historical, and human time scales, and analysis of the implications of such changes in the natural and built components of the landscape for hurricane impact susceptibility. This Special Issue of the Journal of Coastal Research communicates northern Gulf of Mexico research results that (1) improve knowledge of prior climates and depositional environments, (2) assess broad regional ecosystem structure and change over Holocene to human time scales, (3) undertake process studies and change analyses of dynamic landscape components, and (4) integrate framework, climate, variable time and spatial scale mapping, monitoring, and discipline-specific process investigations within interdisciplinary studies.


Journal of Coastal Research | 2016

Creating a Coastal National Elevation Database (CoNED) for Science and Conservation Applications

Cindy A. Thatcher; John C. Brock; Jeffrey J. Danielson; Sandra K. Poppenga; Dean B. Gesch; Monica Palaseanu-Lovejoy; John A. Barras; Gayla A. Evans; Ann E. Gibbs

ABSTRACT Thatcher, C.A.; Brock, J.C.; Danielson, J.J.; Poppenga, S.K.; Gesch, D.B.; Palaseanu-Lovejoy, M.E.; Barras, J.A.; Evans, G.A., and Gibbs, A.E., 2016. Creating a Coastal National Elevation Database (CoNED) for science and conservation applications. In: Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., and Wright, C.W. (eds.), Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal Research, Special Issue, No. 76, pp. 64–74. Coconut Creek (Florida), ISSN 0749-0208. The U.S. Geological Survey is creating the Coastal National Elevation Database, an expanding set of topobathymetric elevation models that extend seamlessly across coastal regions of high societal or ecological significance in the United States that are undergoing rapid change or are threatened by inundation hazards. Topobathymetric elevation models are raster datasets useful for inundation prediction and other earth science applications, such as the development of sediment-transport and storm surge models. These topobathymetric elevation models are being constructed by the broad regional assimilation of numerous topographic and bathymetric datasets, and are intended to fulfill the pressing needs of decision makers establishing policies for hazard mitigation and emergency preparedness, coastal managers tasked with coastal planning compatible with predictions of inundation due to sea-level rise, and scientists investigating processes of coastal geomorphic change. A key priority of this coastal elevation mapping effort is to foster collaborative lidar acquisitions that meet the standards of the USGS National Geospatial Programs 3D Elevation Program, a nationwide initiative to systematically collect high-quality elevation data. The focus regions are located in highly dynamic environments, for example in areas subject to shoreline change, rapid wetland loss, hurricane impacts such as overwash and wave scouring, and/or human-induced changes to coastal topography.


Open-File Report | 2003

Historical and projected coastal Louisiana land changes: 1978-2050

John A. Barras; Shelly Beville; Del Britsch; Stephen Hartley; Suzanne R. Hawes; James Johnston; Paul Kemp; Quin Kinler; Antonio Martucci; Jon Porthouse; Denise J. Reed; Kevin Roy; Sijan Sapkota; Joseph Suhayda


Ecological Engineering | 2005

Implications of global climatic change and energy cost and availability for the restoration of the Mississippi delta

John W. Day; John A. Barras; Ellis J. Clairain; James Johnston; Dubravko Justic; G. Paul Kemp; Jae-Young Ko; Robert R. Lane; William J. Mitsch; Gregory D. Steyer; Paul H. Templet; Alejandro Yáñez-Arancibia

Collaboration


Dive into the John A. Barras's collaboration.

Top Co-Authors

Avatar

James Johnston

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John C. Brock

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert A. Morton

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Gregory D. Steyer

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Monica Palaseanu-Lovejoy

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Cindy A. Thatcher

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Julie C. Bernier

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Adrienne L. Garber

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Brady R. Couvillion

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Christine J. Kranenburg

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge