John A. Fozard
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John A. Fozard.
The Plant Cell | 2014
Leah R. Band; Darren M. Wells; John A. Fozard; Teodor Ghetiu; Andrew P. French; Michael P. Pound; Michael Wilson; Lei Yu; Wenda Li; Hussein Hijazi; Jaesung Oh; Simon P. Pearce; Miguel A. Perez-Amador; Jeonga Yun; Eric M. Kramer; Jose M. Alonso; Christophe Godin; Teva Vernoux; T. Charlie Hodgman; Tony P. Pridmore; Ranjan Swarup; John R. King; Malcolm J. Bennett
This study presents a computational model for auxin transport based on actual root cell geometries and carrier subcellular localizations and tested using the DII-VENUS auxin sensor. The model shows that nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues. Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the cellular scale is essential to understanding how these processes are controlled. In this study, we developed an auxin transport model based on actual root cell geometries and carrier subcellular localizations. We tested model predictions using the DII-VENUS auxin sensor in conjunction with state-of-the-art segmentation tools. Our study revealed that auxin efflux carriers alone cannot create the pattern of auxin distribution at the root tip and that AUX1/LAX influx carriers are also required. We observed that AUX1 in lateral root cap (LRC) and elongating epidermal cells greatly enhance auxin’s shootward flux, with this flux being predominantly through the LRC, entering the epidermal cells only as they enter the elongation zone. We conclude that the nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues.
Mathematical Medicine and Biology-a Journal of The Ima | 2010
John A. Fozard; H. M. Byrne; Oliver E. Jensen; John R. King
This work examines a 1D individual-based model (IBM) for a system of tightly adherent cells, such as an epithelial monolayer. Each cell occupies a bounded region, defined by the location of its endpoints, has both elastic and viscous mechanical properties and is subject to drag generated by adhesion to the substrate. Differential-algebraic equations governing the evolution of the system are obtained from energy considerations. This IBM is then approximated by continuum models (systems of partial differential equations) in the limit of a large number of cells, N, when the cell parameters vary slowly in space or are spatially periodic (and so may be heterogeneous, with substantial variation between adjacent cells). For spatially periodic cell properties with significant cell viscosity, the relationship between the mean cell pressure and length for the continuum model is found to be history dependent. Terms involving convective derivatives, not normally included in continuum tissue models, are identified. The specific problem of the expansion of an aggregate of cells through cell growth (but without division) is considered in detail, including the long-time and slow-growth-rate limits. When the parameters of neighbouring cells vary slowly in space, the O(1/N(2)) error in the continuum approximation enables this approach to be used even for modest values of N. In the spatially periodic case, the neglected terms are found to be O(1/N). The model is also used to examine the acceleration of a wound edge observed in wound-healing assays.
The Plant Cell | 2012
Leah R. Band; John A. Fozard; Christophe Godin; Oliver E. Jensen; Tony P. Pridmore; Malcolm J. Bennett; John R. King
Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties.
New Phytologist | 2014
Rosemary J. Dyson; Gema Vizcay-Barrena; Leah R. Band; Anwesha N. Fernandes; Andrew P. French; John A. Fozard; T. Charlie Hodgman; Kim Kenobi; Tony P. Pridmore; Michael Stout; Darren M. Wells; Michael Wilson; Malcolm J. Bennett; Oliver E. Jensen
Root elongation and bending require the coordinated expansion of multiple cells of different types. These processes are regulated by the action of hormones that can target distinct cell layers. We use a mathematical model to characterise the influence of the biomechanical properties of individual cell walls on the properties of the whole tissue. Taking a simple constitutive model at the cell scale which characterises cell walls via yield and extensibility parameters, we derive the analogous tissue-level model to describe elongation and bending. To accurately parameterise the model, we take detailed measurements of cell turgor, cell geometries and wall thicknesses. The model demonstrates how cell properties and shapes contribute to tissue-level extensibility and yield. Exploiting the highly organised structure of the elongation zone (EZ) of the Arabidopsis root, we quantify the contributions of different cell layers, using the measured parameters. We show how distributions of material and geometric properties across the root cross-section contribute to the generation of curvature, and relate the angle of a gravitropic bend to the magnitude and duration of asymmetric wall softening. We quantify the geometric factors which lead to the predominant contribution of the outer cell files in driving root elongation and bending.
Journal of the Royal Society Interface | 2012
Rea L. Antoniou Kourounioti; Leah R. Band; John A. Fozard; Anthony Hampstead; Anna Lovrics; Edwige Moyroud; Silvia Vignolini; John R. King; Oliver E. Jensen; Beverley J. Glover
The optical properties of plant surfaces are strongly determined by the shape of epidermal cells and by the patterning of the cuticle on top of the cells. Combinations of particular cell shapes with particular nanoscale structures can generate a wide range of optical effects. Perhaps most notably, the development of ordered ridges of cuticle on top of flat petal cells can produce diffraction-grating-like structures. A diffraction grating is one of a number of mechanisms known to produce ‘structural colours’, which are more intense and pure than chemical colours and can appear iridescent. We explore the concept that mechanical buckling of the cuticle on the petal epidermis might explain the formation of cuticular ridges, using a theoretical model that accounts for the development of compressive stresses in the cuticle arising from competition between anisotropic expansion of epidermal cells and isotropic cuticle production. Model predictions rationalize cuticle patterns, including those with long-range order having the potential to generate iridescence, for a range of different flower species.
BioSystems | 2012
John A. Fozard; Michael Lees; John R. King; Brian Logan
Bacteria communicate through small diffusible molecules in a process known as quorum sensing. Quorum-sensing inhibitors are compounds which interfere with this, providing a potential treatment for infections associated with bacterial biofilms. We present an individual-based computational model for a developing biofilm. Cells are aggregated into particles for computational efficiency, but the quorum-sensing mechanism is modelled as a stochastic process on the level of individual cells. Simulations are used to investigate different treatment regimens. The response to the addition of inhibitor is found to depend significantly on the form of the positive feedback in the quorum-sensing model; in cases where the model exhibits bistability, the time at which treatment is initiated proves to be critical for the effective prevention of quorum sensing and hence potentially of virulence.
Frontiers in Plant Science | 2013
John A. Fozard; Mikaël Lucas; John R. King; Oliver E. Jensen
New tools are required to address the challenge of relating plant hormone levels, hormone responses, wall biochemistry and wall mechanical properties to organ-scale growth. Current vertex-based models (applied in other contexts) can be unsuitable for simulating the growth of elongated organs such as roots because of the large aspect ratio of the cells, and these models fail to capture the mechanical properties of cell walls in sufficient detail. We describe a vertex-element model which resolves individual cells and includes anisotropic non-linear viscoelastic mechanical properties of cell walls and cell division whilst still being computationally efficient. We show that detailed consideration of the cell walls in the plane of a 2D simulation is necessary when cells have large aspect ratio, such as those in the root elongation zone of Arabidopsis thaliana, in order to avoid anomalous transverse swelling. We explore how differences in the mechanical properties of cells across an organ can result in bending and how cellulose microfibril orientation affects macroscale growth. We also demonstrate that the model can be used to simulate growth on realistic geometries, for example that of the primary root apex, using moderate computational resources. The model shows how macroscopic root shape can be sensitive to fine-scale cellular geometries.
Physiology | 2015
Oliver E. Jensen; John A. Fozard
Plant growth occurs through the coordinated expansion of tightly adherent cells, driven by regulated softening of cell walls. It is an intrinsically multiscale process, with the integrated properties of multiple cell walls shaping the whole tissue. Multiscale models encode physical relationships to bring new understanding to plant physiology and development.
Journal of Theoretical Biology | 2013
John A. Fozard; John R. King; Malcolm J. Bennett
Regulation of the activity and localization of PIN-FORMED (PIN) membrane proteins, which facilitate efflux of the plant hormone auxin from cells, is important for plants to respond to environmental stimuli and to develop new organs. The protein kinase PINOID (PID) is involved in regulating PIN phosphorylation, and this is thought to affect PIN localization by biasing recycling towards shootwards (apical) (rather than rootwards (basal)) membrane domains. PID has been observed to undergo transient internalization following auxin treatment, and it has been suggested that this may be a result of calcium-dependent sequestration of PID by the calcium-binding protein TOUCH3 (TCH3). We present a mathematical formulation of these processes and examine the resulting steady-state and time-dependent behaviours in response to transient increases in cytosolic calcium. We further combine this model with one for the recycling of PINs in polarized cells and also examine its behaviour. The results provide insight into the behaviour observed experimentally and provide the basis for subsequent studies of the tissue-level implications of these subcellular processes for phenomena such as gravitropism.
BMC Bioinformatics | 2011
John A. Fozard; Glen R. Kirkham; Lee D. K. Buttery; John R. King; Oliver E. Jensen; Helen M. Byrne
BackgroundTo investigate how patterns of cell differentiation are related to underlying intra- and inter-cellular signalling pathways, we use a stochastic individual-based model to simulate pattern formation when stem cells and their progeny are cultured as a monolayer. We assume that the fate of an individual cell is regulated by the signals it receives from neighbouring cells via either diffusive or juxtacrine signalling. We analyse simulated patterns using two different spatial statistical measures that are suited to planar multicellular systems: pair correlation functions (PCFs) and quadrat histograms (QHs).ResultsWith a diffusive signalling mechanism, pattern size (revealed by PCFs) is determined by both morphogen decay rate and a sensitivity parameter that determines the degree to which morphogen biases differentiation; high sensitivity and slow decay give rise to large-scale patterns. In contrast, with juxtacrine signalling, high sensitivity produces well-defined patterns over shorter lengthscales. QHs are simpler to compute than PCFs and allow us to distinguish between random differentiation at low sensitivities and patterned states generated at higher sensitivities.ConclusionsPCFs and QHs together provide an effective means of characterising emergent patterns of differentiation in planar multicellular aggregates.