Leah R. Band
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leah R. Band.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Leah R. Band; Darren M. Wells; Antoine Larrieu; Jianyong Sun; Alistair M. Middleton; Andrew P. French; Géraldine Brunoud; Ethel Mendocilla Sato; Michael Wilson; Benjamin Péret; Marina Oliva; Ranjan Swarup; Ilkka Sairanen; Geraint Parry; Karin Ljung; Tom Beeckman; Jonathan M. Garibaldi; Mark Estelle; Markus R. Owen; Kris Vissenberg; T. Charlie Hodgman; Tony P. Pridmore; John R. King; Teva Vernoux; Malcolm J. Bennett
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organs apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a “tipping point” mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution.
Nature Cell Biology | 2012
Benjamin Péret; Guowei Li; Jin Zhao; Leah R. Band; Ute Voß; Olivier Postaire; Doan Trung Luu; Olivier Da Ines; Ilda Casimiro; Mikaël Lucas; Darren M. Wells; Laure Lazzerini; Philippe Nacry; John R. King; Oliver E. Jensen; Anton R. Schäffner; Christophe Maurel; Malcolm J. Bennett
Aquaporins are membrane channels that facilitate water movement across cell membranes. In plants, aquaporins contribute to water relations. Here, we establish a new link between aquaporin-dependent tissue hydraulics and auxin-regulated root development in Arabidopsis thaliana. We report that most aquaporin genes are repressed during lateral root formation and by exogenous auxin treatment. Auxin reduces root hydraulic conductivity both at the cell and whole-organ levels. The highly expressed aquaporin PIP2;1 is progressively excluded from the site of the auxin response maximum in lateral root primordia (LRP) whilst being maintained at their base and underlying vascular tissues. Modelling predicts that the positive and negative perturbations of PIP2;1 expression alter water flow into LRP, thereby slowing lateral root emergence (LRE). Consistent with this mechanism, pip2;1 mutants and PIP2;1-overexpressing lines exhibit delayed LRE. We conclude that auxin promotes LRE by regulating the spatial and temporal distribution of aquaporin-dependent root tissue water transport.
The Plant Cell | 2014
Leah R. Band; Darren M. Wells; John A. Fozard; Teodor Ghetiu; Andrew P. French; Michael P. Pound; Michael Wilson; Lei Yu; Wenda Li; Hussein Hijazi; Jaesung Oh; Simon P. Pearce; Miguel A. Perez-Amador; Jeonga Yun; Eric M. Kramer; Jose M. Alonso; Christophe Godin; Teva Vernoux; T. Charlie Hodgman; Tony P. Pridmore; Ranjan Swarup; John R. King; Malcolm J. Bennett
This study presents a computational model for auxin transport based on actual root cell geometries and carrier subcellular localizations and tested using the DII-VENUS auxin sensor. The model shows that nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues. Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the cellular scale is essential to understanding how these processes are controlled. In this study, we developed an auxin transport model based on actual root cell geometries and carrier subcellular localizations. We tested model predictions using the DII-VENUS auxin sensor in conjunction with state-of-the-art segmentation tools. Our study revealed that auxin efflux carriers alone cannot create the pattern of auxin distribution at the root tip and that AUX1/LAX influx carriers are also required. We observed that AUX1 in lateral root cap (LRC) and elongating epidermal cells greatly enhance auxin’s shootward flux, with this flux being predominantly through the LRC, entering the epidermal cells only as they enter the elongation zone. We conclude that the nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues.
Plant Physiology | 2010
Francine Perrine-Walker; Patrick Doumas; Mikaël Lucas; Virginie Vaissayre; Nicholas Beauchemin; Leah R. Band; Jérôme Chopard; Geneviève Conejero; Benjamin Péret; John R. King; Jean-Luc Verdeil; Valérie Hocher; Claudine Franche; Malcolm J. Bennett; Louis S. Tisa; Laurent Laplaze
Actinorhizal symbioses are mutualistic interactions between plants and the soil bacteria Frankia that lead to the formation of nitrogen-fixing root nodules. Little is known about the signaling mechanisms controlling the different steps of the establishment of the symbiosis. The plant hormone auxin has been suggested to play a role. Here we report that auxin accumulates within Frankia-infected cells in actinorhizal nodules of Casuarina glauca. Using a combination of computational modeling and experimental approaches, we establish that this localized auxin accumulation is driven by the cell-specific expression of auxin transporters and by Frankia auxin biosynthesis in planta. Our results indicate that the plant actively restricts auxin accumulation to Frankia-infected cells during the symbiotic interaction.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Leah R. Band; Susana Ubeda-Tomás; Rosemary J. Dyson; Alistair M. Middleton; T. Charlie Hodgman; Markus R. Owen; Oliver E. Jensen; Malcolm J. Bennett; John R. King
In the elongation zone of the Arabidopsis thaliana plant root, cells undergo rapid elongation, increasing their length by ∼10-fold over 5 h while maintaining a constant radius. Although progress is being made in understanding how this growth is regulated, little consideration has been given as to how cell elongation affects the distribution of the key regulating hormones. Using a multiscale mathematical model and measurements of growth dynamics, we investigate the distribution of the hormone gibberellin in the root elongation zone. The model quantifies how rapid cell expansion causes gibberellin to dilute, creating a significant gradient in gibberellin levels. By incorporating the gibberellin signaling network, we simulate how gibberellin dilution affects the downstream components, including the growth-repressing DELLA proteins. We predict a gradient in DELLA that provides an explanation of the reduction in growth exhibited as cells move toward the end of the elongation zone. These results are validated at the molecular level by comparing predicted mRNA levels with transcriptomic data. To explore the dynamics further, we simulate perturbed systems in which gibberellin levels are reduced, considering both genetically modified and chemically treated roots. By modeling these cases, we predict how these perturbations affect gibberellin and DELLA levels and thereby provide insight into their altered growth dynamics.
Molecular Systems Biology | 2014
Benjamin Péret; Alistair M. Middleton; Andrew P. French; Antoine Larrieu; Anthony Bishopp; Maria Fransiska Njo; Darren M. Wells; Silvana Porco; Nathan Mellor; Leah R. Band; Ilda Casimiro; Juergen Kleine-Vehn; Steffen Vanneste; Ilkka Sairanen; Romain Mallet; Göran Sandberg; Karin Ljung; Tom Beeckman; Eva Benková; Jiri Friml; Eric M. Kramer; John R. King; Ive De Smet; Tony P. Pridmore; Markus R. Owen; Malcolm J. Bennett
In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia (LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell‐wall enzymes. LAX3 is expressed in just two cell files overlaying new LRP. To understand how this striking pattern of LAX3 expression is regulated, we developed a mathematical model that captures the network regulating its expression and auxin transport within realistic three‐dimensional cell and tissue geometries. Our model revealed that, for the LAX3 spatial expression to be robust to natural variations in root tissue geometry, an efflux carrier is required—later identified to be PIN3. To prevent LAX3 from being transiently expressed in multiple cell files, PIN3 and LAX3 must be induced consecutively, which we later demonstrated to be the case. Our study exemplifies how mathematical models can be used to direct experiments to elucidate complex developmental processes.
The Plant Cell | 2012
Leah R. Band; John A. Fozard; Christophe Godin; Oliver E. Jensen; Tony P. Pridmore; Malcolm J. Bennett; John R. King
Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties.
BMC Systems Biology | 2010
Jamie Twycross; Leah R. Band; Malcolm J. Bennett; John R. King; Natalio Krasnogor
BackgroundStochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks.ResultsIn this case study, we solve an auxin-transport model using analytical methods, deterministic numerical simulations and stochastic numerical simulations. Although the three approaches in general predict the same behaviour, the approaches provide different information that we use to gain distinct insights into the modelled biological system. We show in particular that the analytical approach readily provides straightforward mathematical expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide information on the variability of the system.ConclusionsOur study provides a constructive comparison which highlights the advantages and disadvantages of each of the considered modelling approaches. This will prove helpful to researchers when weighing up which modelling approach to select. In addition, the paper goes some way to bridging the gap between these approaches, which in the future we hope will lead to integrative hybrid models.
Journal of Theoretical Biology | 2012
Rosemary J. Dyson; Leah R. Band; Oliver E. Jensen
Highlights ► We present a model of crosslink dynamics in an expanding plant cell wall ► Yield can be explained by the dependence of crosslink breakage rate on elongation. ► Enzymes that target crosslink binding can soften the wall in its pre-yield state.
Science | 2016
Wei Xuan; Leah R. Band; Robert P. Kumpf; Daniël Van Damme; Boris Parizot; Gieljan De Rop; Davy Opdenacker; Barbara Möller; Noemi Skorzinski; Maria Fransiska Njo; Bert De Rybel; Dominique Audenaert; Moritz K. Nowack; Steffen Vanneste; Tom Beeckman
Cell death establishes a site for development As plant roots grow through the soil, lateral roots emerge to reach more resources. Xuan et al. now show that programmed cell death sets the course for lateral root development. Cells in a specialized region of the root cap periodically die off as a group, defining a location at which a lateral root will later develop. Science, this issue p. 384 Cycles of programmed cell death establish the developmental clock in plant roots. The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that the periodicity of lateral organ induction is driven by recurrent programmed cell death at the most distal edge of the root cap. We suggest that synchronous bursts of cell death in lateral root cap cells release pulses of auxin to surrounding root tissues, establishing the pattern for lateral root formation. The dynamics of root cap turnover may therefore coordinate primary root growth with root branching in order to optimize the uptake of water and nutrients from the soil.