Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Hoffnagle is active.

Publication


Featured researches published by John A. Hoffnagle.


Ibm Journal of Research and Development | 2000

Holographic data storage

J. Ashley; M.-P Bernal; Geoffrey W. Burr; H. Coufal; H. Guenther; John A. Hoffnagle; C. M. Jefferson; Brian Marcus; R. M. Macfarlane; Robert M. Shelby; Glenn T. Sincerbox

We present an overview of our research effort on volume holographic digital data storage. Innovations, developments, and new insights gained in the design and operation of working storage platforms, novel optical components and techniques, data coding and signal processing algorithms, systems tradeoffs, materials testing and tradeoffs, and photon-gated storage materials are summarized.


Applied Optics | 2000

Design and performance of a refractive optical system that converts a Gaussian to a flattop beam

John A. Hoffnagle; Jefferson Cm

A system of two aspheric lenses is described, which efficiently converts a collimated Gaussian beam to a flattop beam. Departing from earlier designs, both aspheric surfaces were convex, simplifying their fabrication; the output beam was designed with a continuous roll-off, allowing control of the far-field diffraction pattern; and diffraction from the entrance and exit apertures was held to a negligible level. The design principles are discussed in detail, and the performance of the as-built optics is compared quantitatively with the theoretical design. Approximately 78% of the incident power is enclosed in a region with 5% rms power variation. The 8-mm-diameter beam propagates approximately 0.5 m without significant change in the intensity profile; when the beam is expanded to 32 mm in diameter, this range increases to several meters.


Optics Letters | 1997

Modulation coding for pixel-matched holographic data storage

Geoffrey W. Burr; Jonathan J. Ashley; H. Coufal; Robert K. Grygier; John A. Hoffnagle; C. Michael Jefferson; Brian Marcus

We describe a digital holographic storage system for the study of noise sources and the evaluation of modulation and error-correction codes. A precision zoom lens and Fourier transform optics provide pixel-to-pixel matching between any input spatial light modulator and output CCD array over magnifications from 0.8 to 3. Holograms are angle multiplexed in LiNbO(3):Fe by use of the 90 degrees geometry, and reconstructions are detected with a 60-frame/s CCD camera. Modulation codes developed on this platform permit image transmission down to signal levels of ~2000 photons per ON camera pixel, at raw bit-error rates (BERs) of better than 10(-5). Using an 8-12-pixel modulation code, we have stored and retrieved 1200 holograms (each with 45,600 user bits) without error, for a raw BER of <2x10(-8).


Optics Letters | 1997

Pixel-matched holographic data storage with megabit pages

Robert M. Shelby; John A. Hoffnagle; Geoffrey W. Burr; C. M. Jefferson; M.-P. Bernal; H. Coufal; Robert K. Grygier; H. Günther; R. M. Macfarlane; Glenn Tavernia Sincerbox

Digital data-page holograms consisting of 1024 x 1024 arrays of binary pixels have been stored and subsequently retrieved with an optical exposure consistent with a data rate 1 Gbit /s. Each input pixel was precisely registered with a single detector pixel, and a raw bit-error rate as low as 2.4 x 10(-6) was demonstrated with global-threshold detection. To our knowledge, this is the first demonstration of the often-cited goal of holographic data storage of megabit data pages and a gigabit-per-second data rate.


Optics Letters | 2001

Volume holographic data storage at an areal density of 250 gigapixels/in. 2

Geoffrey W. Burr; C. Michael Jefferson; H. Coufal; Mark C. Jurich; John A. Hoffnagle; R. M. Macfarlane; Robert M. Shelby

One thousand volume holographic data pages, each containing 1x10(6)pixels , are stored in a common volume of LiNbO(3) :Fe by use of the 90 degrees geometry. An effective transverse aperture of 1.6 mm x 1.6mm , realized by repetition of this experiment at each of the eight surrounding locations, results in a demonstrated areal density of 394pixels/mum (2) (254 Gpixels/in. (2)) . Short-focal-length Fourier optics provide a tightly confined object beam at the crystal; the reference beam is angle multiplexed. Data pages retrieved with a 1024 x 1024 CCD camera are processed to remap bad spatial light modulator pixels and to compensate for global and local pixel misregistration and are then decoded with a strong 8-bits-from-12-pixels modulation code. The worst-case raw bit-error rate (BER) before error correction was 1.1x10(-3) , sufficient to deliver a user BER of 10(-12) at an overall code rate of 0.61 user bits per detector pixel. This result corresponds to 1.08% of the well-known theoretical volumetric density limit of 1/lambda(3) .


Optical Engineering | 2003

Beam shaping with a plano-aspheric lens pair

John A. Hoffnagle; C. Michael Jefferson

A pair of plano-aspheric lenses can be used to transform a collimated, radially symmetric, Gaussian beam to a radially symmetric flat-top beam. Diffraction of the output beam due to the choice of irradiance profile, as well as the finite aperture of the optics, must be considered if a propagating beam is required. Choosing both lenses to be positive, one can show that the aspheric surfaces are strictly convex, which facilitates fabrication by magnetorheological figuring. A fused silica lens pair is demonstrated, which can be used at any wavelength from 250 to 1550 nm to transform a Gaussian to a flat-top beam. Measurements of both the irradiance profile and phase of the output beam are presented and compared to the ideal design. These optics transform 78% of the total input beam power into the flat-top region of the output beam, which is uniform to better than 5% rms. For applications requiring uniform illumination, this represents a fourfold improvement in power utilization over the Gaussian input. The output wavefront is flat to a quarter wave at 514 nm, resulting in a beam that propagates approximately 0.5 m without significant change in profile.


Applied Optics | 1996

A precision tester for studies of holographic optical storage materials and recording physics.

M.-P. Bernal; H. Coufal; Robert K. Grygier; John A. Hoffnagle; C. M. Jefferson; R. M. Macfarlane; Robert M. Shelby; Glenn Tavernia Sincerbox; P. Wimmer; G. Wittmann

The design and the realization of an advanced precision optical test stand for evaluating materials and developing tools and techniques for holographic digital data storage are described. This apparatus allows studies of holographic recording materials and recording physics to be performed in the context of practical data storage. The system concept, its implementation, and its performance are described, and examples of holographic storage in photorefractive materials are discussed.


Applied Optics | 2006

Laser beam shaping profiles and propagation

David L. Shealy; John A. Hoffnagle

We consider four families of functions--the super-Gaussian, flattened Gaussian, Fermi-Dirac, and super-Lorentzian--that have been used to describe flattened irradiance profiles. We determine the shape and width parameters of the different distributions, when each flattened profile has the same radius and slope of the irradiance at its half-height point, and then we evaluate the implicit functional relationship between the shape and width parameters for matched profiles, which provides a quantitative way to compare profiles described by different families of functions. We conclude from an analysis of each profile with matched parameters using Kirchhoff-Fresnel diffraction theory and M2 analysis that the diffraction patterns as they propagate differ by small amounts, which may not be distinguished experimentally. Thus, beam shaping optics is designed to produce either of these four flattened output irradiance distributions with matched parameters will yield similar irradiance distributions as the beam propagates.


Advances in Resist Technology and Processing XVII | 2000

Effect of resist components on image spreading during postexposure bake of chemically amplified resists

William D. Hinsberg; Frances A. Houle; Martha I. Sanchez; Michael E. Morrison; Gregory M. Wallraff; Carl E. Larson; John A. Hoffnagle; Phillip J. Brock; Gregory Breyta

The ultimate feature size achievable using a chemically amplified resist is determined by chemical and physical processes occurring during the post-exposure bake process. Using a combined experimental-modelling procedure we previously have developed a physically accurate, predictive description of coupled deprotection and diffusion in poly(p- tert-butyloxycar-bonyloxystyrene) (PTBOCST) resist containing a diaryliodonium perfluorobutanesulfonate salt as photoacid generator (PAG). In the present work we extend that study to quantify the impact of anion size and of added base on resist reaction diffusion kinetics. Our results show that both short and long range mobility of the PAG anion influence image spreading; the small triflate counterion leads to acid diffusion larger by a factor of 9 - 70 than that observed with the larger perfluoro-butanesulfonate counterion. The addition of tetra-n-butylammonium hydroxide leads to an overall suppression of image spreading in the exposed resist. This effect can be analyzed quantitatively using a proportional neutralization model, which reveals that base addition can lead to an overall sharpening of the developable latent image of deprotection even in the absence of acid diffusion.


Advances in Resist Technology and Processing XX | 2003

Extendibility of chemically amplified resists: another brick wall?

William D. Hinsberg; Frances A. Houle; Martha I. Sanchez; John A. Hoffnagle; Gregory M. Wallraff; David R. Medeiros; Gregg M. Gallatin; Jonathan L. Cobb

The chemically amplified resist concept, first described two decades past and originally targeted for the 1000 nm device generation, has proved to have remarkable versatility. The semiconductor industry has come to rely on the properties of CA resists to achieve high resolution, high aspect ratio imaging accompanied by the high throughput that stems from their catalytic imaging mechanism. As the industry maps the evolution of lithographic technology to the 20 nm regime, it is appropriate to review the factors that control the performance of CA resists, and examine whether the traditional evolutionary path of materials refinement will provide materials capable of supporting device manufacturing at those dimensions. The impacts of image blur, line-edge roughness and shot noise on the ability to image CA resists at nanoscale dimensions will be discussed.

Researchain Logo
Decentralizing Knowledge