John A. Jennings
University of Arkansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John A. Jennings.
Journal of Agricultural and Applied Economics | 2012
Stephen A. Smith; J. D. Caldwell; Michael P. Popp; K.P. Coffey; John A. Jennings; Mary C. Savin; C.F. Rosenkrans
Tall fescue toxicosis adversely affects calving rate and weight gains reducing returns to cow-calf producers in the south–central United States. This grazing study estimated animal and economic performance implications of endophyte-infected fescue and calving season. Establishing novel endophyte-infected tall fescue on 25% of pasture acres resulted in improved calving rates (87% vs. 70%), weaning weights (532 lbs vs. 513 lbs), and partial returns per acre (
Animal Production Science | 2017
P. A. Beck; T. Hess; D. S. Hubbell; M. S. Gadberry; John A. Jennings; M. B. Sims
257 vs.
Animal Production Science | 2017
P. A. Beck; T. Hess; D. S. Hubbell; John A. Jennings; M. S. Gadberry; M. B. Sims
217). Additionally, fall-calving cows had higher calving rates (91% vs. 67%), weaning weights (550 lbs vs. 496 lbs), and partial returns per acre (
Animal Production Science | 2017
P. A. Beck; T. Hess; D. S. Hubbell; M. S. Gadberry; John A. Jennings; M. B. Sims
269 vs.
Journal of Animal Science | 2016
P. A. Beck; C. B. Stewart; M. B. Sims; M. S. Gadberry; John A. Jennings
199) than spring calving cows.
Forage and Grazinglands | 2004
Marvin H. Hall; John A. Jennings; Glenn E. Shewmaker
The objective of this study was to evaluate the effects of including alfalfa (ALF, Medicago sativa L.) or a combination of white (Trifolium repens L.) and red (Trifolium pretense L.) clovers (CLVR) inter-seeded into bermudagrass (Cynodon dactylon L. Pers.) on herbage nutritive value compared with monocultures of bermudagrass fertilised with 0 (0N), 56 (56N), or 112 (112N) kg nitrogen (N)/ha over four grazing seasons. In autumn, at the end of the fourth year and in the spring before the fifth grazing season, alfalfa and clover plants were killed and the carryover N benefit of CLVR or ALF was compared with N fertilisation rates during the fifth year. Across years, N fertilisation rate increased herbage mass and carrying capacity linearly; whereas herbage production from CLVR and ALF swards was equivalent to 56N, were greater than 0N and less than 112N. Herbage mass in CLVR and ALF swards was greater than fertilised bermudagrass swards in the spring and did not differ from fertilised bermudagrass in the early summer. In late summer herbage accumulation of CLVR and ALF swards appeared to decrease, limiting the herbage mass in the legume pastures compared with 56N and 112N. Carrying capacity of CLVR and ALF swards was greater than fertilised bermudagrass in the spring and early summer, but did not differ from fertilised swards in the late summer. The N benefit of including legumes in bermudagrass swards can alleviate the reliance on synthetic N fertilisation with little overall effect on pasture carrying capacity.
Agronomy Journal | 1998
John A. Jennings; C. Jerry Nelson
The objective of this study was to evaluate the performance of steers (n = 590, 263 ± 30.6 kg) grazing alfalfa (ALF, Medicago sativa L.) or a combination of white (Trifolium repens L.) and red (Trifolium pretense L.) clovers (CLVR) inter-seeded into bermudagrass (Cynodon dactylon L. Pers.) pastures compared with fertilisation with 0 (0N), 56 (56N), or 112 (112N) kg nitrogen (N)/ha (n = 4, 0.8-ha pastures per treatment) in north-east Arkansas (USA) over 4 years. The carryover N benefit of CLVR or ALF was compared with N fertilisation rates during the fifth year on performance of growing steers (n = 120; 235 ± 22.6 kg). Average daily gain increased with N application rate and legume pastures were similar to 56N; but liveweight gain per steer grazing legume pastures tended to be greater than 112N. Steer grazing days per hectare and liveweight gain per hectare were greater for ALF and CLVR than bermudagrass monocultures regardless of N fertilisation rate. Steer average daily gain, grazing days per hectare and liveweight gain per hectare for carryover N from legumes did not differ from 56N. These results indicate that replacing synthetic N by inter-seeding legumes into bermudagrass swards has the potential to improve individual animal performance and production per unit area and carryover benefits of legume N may be equivalent to 56 kg N/ha.
Agronomy Journal | 2002
John A. Jennings; C. Jerry Nelson
The objective of this study was to evaluate the effects of including alfalfa (ALF, Medicago sativa L.) or a combination of white (Trifolium repens L.) and red (Trifolium pretense L.) clovers (CLVR) inter-seeded into bermudagrass (Cynodon dactylon L. Pers.) on herbage nutritive value compared with monocultures of bermudagrass fertilised with 0 (0N), 56 (56N), or 112 (112N) kg nitrogen (N)/ha over four grazing seasons. At the end of the fourth year (during the winter), legume plants in ALF and CLVR were killed and the carryover N benefit on bermudagrass nutritive value was evaluated during the fifth year. Pre-grazing herbage of all pastures exceeded the dietary recommendations for growing steers to maintain 0.9 kg/day average daily liveweight gain for crude protein and total digestible nutrients, 118 and 617 g kg/DM, respectively. Post-grazing herbage in ALF was below 600 g/kg total digestible nutrients at all times during the grazing season, post-grazing total digestible nutrients of CLVR was below 600 g/kg during the late summer and autumn. Post-grazing herbage of monoculture bermudagrass pastures fell below 600 g/kg in the middle of summer regardless of N fertilisation. Carryover N benefits of legumes were similar to 112N in the early summer, but were not different than 0N and 56N during the late summer and autumn. Replacing applications of synthetic N in bermudagrass swards with inter-seeding of either clovers or alfalfa produce herbage with equivalent nutritive value to heavily N fertilised monocultures of bermudagrass during the early summer, and similar to moderately N fertilised in the late summer and autumn. The inclusion of legumes in bermudagrass swards can reduce the reliance on synthetic N fertilisation with little overall effect on herbage nutritive quality possibly decreasing environmental impacts of grazing production systems.
Agronomy Journal | 2006
D. A. Scarbrough; W. K. Coblentz; K.P. Coffey; D. S. Hubbell; T. F. Smith; J. B. Humphry; John A. Jennings; R. K. Ogden; J. E. Turner
The objective this research was to determine the effect of application of multiple grazing management practices at 2 stocking rates (SR) on the productivity and economics of the cow-calf enterprise in the Southeastern United States over a 4-yr period. Pasture management systems included: continuous grazing management at a moderate SR (0.8 ha/cow; CG) without additional forage management, rotational grazing management at a moderate SR (0.8 ha/cow (MR) with addition of stockpiled bermudagrass [ (L.) Pers.] and complementary cool season annuals, and rotational grazing management similar to MR but with a high SR (0.4 ha/cow; HR). Stockpiling in MR and HR was managed by fertilization of 0.2 ha/cow of bermudagrass in early August with 168 kg ammonium nitrate and deferring grazing until November. Wheat (; 112 kg/ha) and annual ryegrass ( Lam.; 28 kg/ha) were interseeded (0.2 ha/cow) in HR and MR with a no-till drill in the fall. Cow and calf performance and economics data were analyzed by ANOVA using the MIXED procedure of SAS (SAS Inst. Inc., Cary, NC) and pregnancy percentage was analyzed using the GLIMMIX procedure of SAS; pasture was the experimental unit and year was the random block. Hay feeding days decreased ( < 0.01) from 107 ± 10.9 d for CG to 37 ± 10.9 d for HR, which was further reduced ( = 0.01) to 15 ± 10.9 d for MR. Pregnancy percentage did not differ ( = 0.20) among treatments. Weaning BW in CG (237 ± 7.3 kg) tended ( = 0.09) to be greater than in MR (227 ± 7.3 kg) and were greater ( < 0.01) than in HR (219 ± 7.3 kg). However, total weaning BW per hectare was 89% greater ( < 0.01) for HR compared with CG and MR, which did not differ ( = 0.31). With rotational stocking, there was the opportunity to harvest excess forage as hay in both MR and HR with a net value of US
Agronomy Journal | 2005
D. A. Scarbrough; W. K. Coblentz; J. B. Humphry; K.P. Coffey; T. C. Daniel; Thomas J. Sauer; John A. Jennings; J. E. Turner; D.W. Kellogg
52.90/ha ± 25.73 and