Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Tine is active.

Publication


Featured researches published by John A. Tine.


Cancer Immunology, Immunotherapy | 2000

Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule

Heidi Hörig; Lee D; William Conkright; Joe Divito; Henry Hasson; Michelle LaMare; Audrey Rivera; David Park; John A. Tine; Ken Guito; Kwong Wong-Yok Tsang; Jeffrey Schlom; Howard L. Kaufman

Abstract The generation of cytotoxic effector T cells requires delivery of two signals, one derived from a specific antigenic epitope and one from a costimulatory molecule. A phase I clinical trial was conducted with a non-replicating canarypoxvirus (ALVAC) constructed to express both human carcinoembryonic antigen (CEA) and the B7.1 costimulatory molecule. This was the first study in cancer patients to determine if the delivery of costimulation with a tumor vaccine was feasible and improved immune responses. Three cohorts of six patients, each with advanced CEA-expressing adenocarcinomas, were treated with increasing doses of an ALVAC-CEA-B7.1 vaccine (4.5 × 106, 4.5 × 107, and 4.5 × 108 plaque-forming units, PFU). Patients were vaccinated by intramuscular injection every 4 weeks for 3 months and monitored for side-effects, tumor growth and anti-CEA immune responses. ALVAC-CEA- B7.1 at doses up to 4.5 × 108 PFU was given without evidence of significant toxicity or autoimmune reactions. Three patients experienced clinically stable disease that correlated with increasing CEA-specific precursor T cells, as shown by in vitro interferon-γ enzyme-linked immunoassay spot tests (ELISPOT). These three patients underwent repeated vaccination resulting in augmented CEA-specific T cell responses. This study represents the first use of costimulation to enhance antitumor vaccines in cancer patients. This approach resulted in CEA-specific immunity associated with stable diseases in three patients. This study also demonstrated that CEA-specific T cell responses could be sustained by repeated vaccinations. Although the number of patients was small, the addition of B7.1 to virus-based vaccines may improve immunological and stable diseases to vaccination against tumor-associated antigens with tolerable toxicity.


The Journal of Infectious Diseases | 1998

Phase I/IIa Safety, Immunogenicity, and Efficacy Trial of NYVAC-Pf7, a Pox-Vectored, Multiantigen, Multistage Vaccine Candidate for Plasmodium falciparum Malaria

Christian F. Ockenhouse; Peifang Sun; David E. Lanar; Bruce T. Wellde; B. Ted Hall; Kent E. Kester; José A. Stoute; Alan J. Magill; Urszula Krzych; Linda Farley; Robert A. Wirtz; Jerald C. Sadoff; David C. Kaslow; Sanjai Kumar; L. W. Preston Church; James M. Crutcher; Benjamin Wizel; Stephen L. Hoffman; Ajit Lalvani; Adrian V. S. Hill; John A. Tine; Kenneth P. Guito; Charles de Taisne; Robin F. Anders; Toshihiro Horii; Enzo Paoletti; W. Ripley Ballou

Candidate malaria vaccines have failed to elicit consistently protective immune responses against challenge with Plasmodium falciparum. NYVAC-Pf7, a highly attenuated vaccinia virus with 7 P. falciparum genes inserted into its genome, was tested in a phase I/IIa safety, immunogenicity, and efficacy vaccine trial in human volunteers. Malaria genes inserted into the NYVAC genome encoded proteins from all stages of the parasites life cycle. Volunteers received three immunizations of two different dosages of NYVAC-Pf7. The vaccine was safe and well tolerated but variably immunogenic. While antibody responses were generally poor, cellular immune responses were detected in >90% of the volunteers. Of the 35 volunteers challenged with the bite of 5 P. falciparum-infected Anopheles mosquitoes, 1 was completely protected, and there was a significant delay in time to parasite patency in the groups of volunteers who received either the low or high dose of vaccine compared with control volunteers.


Journal of Immunology | 2000

Improving Protective Immunity Induced by DNA-Based Immunization: Priming with Antigen and GM-CSF-Encoding Plasmid DNA and Boosting with Antigen-Expressing Recombinant Poxvirus

Martha Sedegah; Walter R. Weiss; John B. Sacci; Yupin Charoenvit; Richard C. Hedstrom; Kalpana Gowda; Victoria Majam; John A. Tine; Sanjai Kumar; Peter Hobart; Stephen L. Hoffman

Intramuscular immunization with a naked DNA plasmid expressing the Plasmodium yoelii circumsporozoite protein (pPyCSP) protects mice against challenge with P. yoelii sporozoites. This protection can be improved either by coadministration of a plasmid expressing murine GM-CSF (pGMCSF) or by boosting with recombinant poxvirus expressing the PyCSP. We now report that combining these two strategies, by first mixing the priming dose of pPyCSP with pGMCSF and then boosting with recombinant virus, can substantially increase vaccine effectiveness. Not only were immune responses and protection improved but the pPyCSP dose could be lowered from 100 μg to 1 μg with little loss of immunogenicity after boost with recombinant poxvirus. Comparing mice primed by the 1-μg doses of pPyCSP plus 1 μg pGMCSF with mice primed by 1-μg doses of pPyCSP alone, the former were better protected (60% vs 0) and had higher concentrations of Abs (titers of 163, 840 vs 5, 120 by indirect fluorescent Ab test against sporozoites), more ex vivo CTL activity (25% vs 7% specific lysis), and more IFN-γ-secreting cells by enzyme-linked immunospot assay (1460 vs 280 IFN-γ spot-forming cells/106 cells). Priming with plasmid vaccine plus pGMCSF and boosting with recombinant poxviruses strongly improves the immunogenicity and protective efficacy of DNA vaccination and allows for significant reduction of dose.


Infection and Immunity | 2001

Multistage Multiantigen Heterologous Prime Boost Vaccine for Plasmodium knowlesi Malaria Provides Partial Protection in Rhesus Macaques

William O. Rogers; J. Kevin Baird; Anita Kumar; John A. Tine; Walter R. Weiss; Joao C. Aguiar; Kalpana Gowda; Robert W. Gwadz; Sanjai Kumar; Mark Gold; Stephen L. Hoffman

ABSTRACT A nonhuman primate model for malaria vaccine development allowing reliable, stringent sporozoite challenge and evaluation of both cellular and antibody responses is needed. We therefore constructed a multicomponent, multistage DNA vaccine for the simian malaria species Plasmodium knowlesi including two preerythrocytic-stage antigens, the circumsporozoite protein (PkCSP) and sporozoite surface protein 2 (PkSSP2), and two blood stage antigens, apical merozoite antigen 1 (PkAMA1) and merozoite surface protein 1 (PkMSP1p42), as well as recombinant canarypox viruses encoding the four antigens (ALVAC-4). The DNA vaccine plasmids expressed the corresponding antigens in vitro and induced antiparasite antibodies in mice. Groups of four rhesus monkeys received three doses of a mixture of the four DNA vaccine plasmids and a plasmid encoding rhesus granulocyte-monocyte colony-stimulating factor, followed by boosting with a single dose of ALVAC-4. Three groups received the priming DNA doses by different routes, either by intramuscular needle injection, by intramuscular injection with a needleless injection device, the Biojector, or by a combination of intramuscular and intradermal routes by Biojector. Animals immunized by any route developed antibody responses against sporozoites and infected erythrocytes and against a recombinant PkCSP protein, as well as gamma interferon-secreting T-cell responses against peptides from PkCSP. Following challenge with 100 P. knowlesi sporozoites, 1 of 12 experimental monkeys was completely protected and the mean parasitemia in the remaining monkeys was significantly lower than that in 4 control monkeys. This model will be important in preclinical vaccine development.


Infection and Immunity | 2002

Protection of rhesus macaques against lethal Plasmodium knowlesi malaria by a heterologous DNA priming and poxvirus boosting immunization regimen

William O. Rogers; Walter R. Weiss; Anita Kumar; Joao C. Aguiar; John A. Tine; Robert W. Gwadz; Joseph G. Harre; Kalpana Gowda; Dharmendar Rathore; Sanjai Kumar; Stephen L. Hoffman

ABSTRACT We tested a cytokine-enhanced, multiantigen, DNA priming and poxvirus boosting vaccine regimen for prevention of malaria in the Plasmodium knowlesi-rhesus macaque model system. Animals were primed with a mixture of DNA plasmids encoding two preerythrocytic-stage proteins and two erythrocytic-stage proteins from P. knowlesi and combinations of the cytokines granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor alpha and were boosted with a mixture of four recombinant, attenuated vaccinia virus strains encoding the four P. knowlesi antigens. Two weeks after boosting, the geometric mean immunofluorescence titers in the immunized groups against sporozoites and infected erythrocytes ranged from 160 to 8,096 and from 1,810 to 5,120, respectively. The geometric mean anti-P. knowlesi circumsporozoite protein (PkCSP) titers ranged from 1,761 to 24,242. Peripheral blood mononuclear cells (PBMC) from the immunized monkeys produced gamma interferon (IFN-γ) in response to incubation with pooled peptides from the PkCSP at frequencies of 10 to 571 spot-forming cells/106 PBMC. Following challenge with 100 infectious P. knowlesi sporozoites, 2 of 11 immunized monkeys were sterilely protected, and 7 of the 9 infected monkeys resolved their parasitemias spontaneously. In contrast, all four controls became infected and required treatment for overwhelming parasitemia. Early protection was strongly associated with IFN-γ responses against a pool of peptides from the preerythrocytic-stage antigen, PkCSP. These findings demonstrate that a multistage, multiantigen, DNA priming and poxvirus boosting vaccine regimen can protect nonhuman primates from an otherwise lethal malaria sporozoite challenge.


Immunology Letters | 2002

A DNA vaccine encoding the 42 kDa C-terminus of merozoite surface protein 1 of Plasmodium falciparum induces antibody, interferon-γ and cytotoxic T cell responses in rhesus monkeys: immuno-stimulatory effects of granulocyte macrophage-colony stimulating factor

Sanjai Kumar; Francois Villinger; Miranda Oakley; Joao C. Aguiar; Trevor R. Jones; Richard C. Hedstrom; Kalpana Gowda; John P. Chute; Anthony Stowers; David C. Kaslow; Elaine K Thomas; John A. Tine; Dennis M. Klinman; Stephen L. Hoffman; Walter W Weiss

We have constructed a DNA plasmid vaccine encoding the C-terminal 42-kDa region of the merozoite surface protein 1 (pMSP1(42)) from the 3D7 strain of Plasmodium falciparum (Pf3D7). This plasmid expressed recombinant MSP1(42) after in vitro transfection in mouse VM92 cells. Rhesus monkeys immunized with pMSP1(42) produced antibodies reactive with Pf3D7 infected erythrocytes by IFAT, and by ELISA against yeast produced MSP1(19) (yMSP1(19)). Immunization also induced antigen specific T cell responses as measured by interferon-gamma production, and by classical CTL chromium release assays. In addition, immunization with pMSP1(42) primed animals for an enhanced antibody response to a subsequent boost with the recombinant yMSP1(19). We also evaluated Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) as an adjuvant for pMSP1(42.) We tested both rhesus GM-CSF expressed from a DNA plasmid, and E. coli produced recombinant human GM-CSF. Plasmids encoding rhesus GM-CSF (prhGM-CSF) and human GM-CSF (phuGM-CSF) were constructed; these plasmids expressed bio-active recombinant GMCSF. Co-immunization with a mixture of prhGM-CSF and pMSP1(42) induced higher specific antibody responses after the first dose of plasmid, but after three doses of DNA monkeys immunized with or without prhGM-CSF had the same final antibody titers and T cell responses. In comparison, rhuGM-CSF protein did not lead to accelerated antibody production after the first DNA dose. However, antibody titers were maintained at a slightly higher level in monkeys receiving GM-CSF protein, and they had a higher response to boosting with recombinant MSP1(19). The GM-CSF plasmid or protein appears to be less potent as an adjuvant in rhesus monkeys than each is in mice, and more work is needed to determine if GM-CSF can be a useful adjuvant in DNA vaccination of primates.


Journal of Immunological Methods | 2001

ELISPOT assay for detection of peptide specific interferon-γ secreting cells in rhesus macaques

Anita Kumar; Walter R. Weiss; John A. Tine; Stephen L. Hoffman; William O. Rogers

Abstract A reliable procedure to measure antigen specific T cell responses in rhesus macaques is required to determine the efficacy of vaccines and immunotherapies. The currently available T cell assays are poorly quantifiable or technically difficult to perform. Classical 51 Cr-release cytotoxic T cell (CTL) assays are cumbersome and difficult to quantitate reproducibly. Detection of specific T-cell using MHC-peptide tetrameric complexes is highly sensitive, but requires knowledge of MHC type and prior identification of T cell epitopes. We therefore developed a rhesus interferon-γ (IFN-γ) ELISPOT assay capable of detecting IFN-γ secretion in response to stimulation with pooled 20-mer peptides. Peripheral blood mononuclear cells (PBMCs) from rhesus monkeys immunized with a DNA vaccine and recombinant canary pox encoding the Plasmodium knowlesi circumsporozoite protein (PkCSP) were incubated with pools of peptides from PkCSP. Positive responses to peptide pools and individual peptides ranging from 100 to 450 spot forming cells (SFC)/10 6 PBMC were detected in four of four immunized monkeys and in zero of two control monkeys. In two monkeys studied in detail, the IFN-γ response was focussed on a single 20-mer peptide, QGDGANAGQPQAQGDGANAG, and was dependent on CD4 + , but not CD8 + , T cells. Background responses in control monkeys and preimmunization PBMCs ranged from 10 to 50 SFC/10 6 PBMC. The average within assay and between assay coefficients of variation (CV) for this peptide ELISPOT were 21.9 and 24.7%, respectively. This peptide IFN-γ assay will be a useful tool for evaluation of T cell responses in rhesus macaques.


Journal of Immunology | 2000

Adoptive T Cell Immunotherapy of Human Uveal Melanoma Targeting gp100

Roger P. M. Sutmuller; Luc R. H. M. Schurmans; Leonie M. van Duivenvoorde; John A. Tine; Ellen I. H. van der Voort; René E. M. Toes; Cornelis J. M. Melief; Martine J. Jager; Rienk Offringa

HLA-A*0201-restricted CTL against human gp100 were isolated from HLA-A*0201/Kb (A2/Kb)-transgenic mice immunized with recombinant canarypox virus (ALVAC-gp100). These CTL strongly responded to the gp100154–162 epitope, in the context of both the chimeric A2/Kb and the wild-type HLA-A*0201− molecule, and efficiently lysed human HLA-A*0201+, gp100+ melanoma cells in vitro. The capacity of the CTL to eradicate these tumors in vivo was analyzed in A2/Kb-transgenic transgenic mice that had received a tumorigenic dose of human uveal melanoma cells in the anterior chamber of the eye. This immune-privileged site offered the unique opportunity to graft xenogeneic tumors into immunocompetent A2/Kb-transgenic mice, a host in which they otherwise would not grow. Importantly, systemic (i.v.) administration of the A2/Kb-transgenic gp100154–162-specific CTL resulted in rapid elimination of the intraocular uveal melanomas, indicating that anti-tumor CTL are capable of homing to the eye and exerting their tumoricidal effector function. Flow cytometry analysis of ocular cell suspensions with HLA-A*0201-gp100154–162 tetrameric complexes confirmed the homing of adoptively transferred CTL. Therefore, the immune-privileged state of the eye permitted the outgrowth of xenogeneic uveal melanoma cells, but did not protect these tumors against adoptive immunotherapy with highly potent anti-tumor CTL. These data constitute the first direct indication that immunotherapy of human uveal melanoma may be feasible.


Archive | 1994

Recent Advances in Recombinant Vaccines for Viral and Parasitic Diseases

John A. Tine; Jill Taylor; Enzo Paoletti

The rapid development of recombinant DNA technology has enhanced the prospects for improved vaccines in a number of areas. The ability to express individual components of disease organisms in large quantities has allowed scientists to evaluate the immunogenic and pathogenic potential of the components and to develop an understanding of what optimal combination of the components would define an effective, non-reactogenic vaccine. One has only to review the literature on the use of vaccinia virus expressing individual antigens and combinations of antigens from a host of viral disease agents to appreciate the recent advances in understanding of viral immunobiology that has resulted from this technology (Mackett and Smith, 1986; Tartaglia et al., 1990; Cox et al., 1992). Secondly, the development of a variety of viral and bacterial expression systems will allow the comparative evaluation of alternate modes of antigen delivery and presentation. Such a comparison should ultimately lead to a definition of optimal vaccine candidates for particular diseases.


Proceedings of the National Academy of Sciences of the United States of America | 1998

Boosting with recombinant vaccinia increases immunogenicity and protective efficacy of malaria DNA vaccine

Martha Sedegah; Trevor Jones; M. Kaur; Richard C. Hedstrom; Peter Hobart; John A. Tine; Stephen L. Hoffman

Collaboration


Dive into the John A. Tine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard C. Hedstrom

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Sanjai Kumar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Walter R. Weiss

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

David E. Lanar

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Kalpana Gowda

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Enzo Paoletti

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Joao C. Aguiar

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha Sedegah

Naval Medical Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge