John C. Brasunas
Goddard Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John C. Brasunas.
The Astrophysical Journal | 2009
D. E. Jennings; F. M. Flasar; V. G. Kunde; R. E. Samuelson; John C. Pearl; Conor A. Nixon; R. C. Carlson; A. A. Mamoutkine; John C. Brasunas; E. Guandique; Richard Karl Achterberg; Gordon L. Bjoraker; P. N. Romani; Marcia Segura; S. A. Albright; M. H. Elliott; J. S. Tingley; Simon B. Calcutt; Athena Coustenis; R. Courtin
Radiance from the surface of Titan can be detected from space through a spectral window of low opacity in the thermal infrared at 19 μm (530 cm–1). By combining Composite Infrared Spectrometer observations from Cassinis first four years, we have mapped the latitude distribution of zonally averaged surface brightness temperatures. The measurements are corrected for atmospheric opacity as derived from the dependence of radiance on the emission angle. At equatorial latitudes near the Huygens landing site, the surface brightness temperature is found to be 93.7 ± 0.6 K, in excellent agreement with the in situ measurement. Temperature decreases toward the poles, reaching 90.5 ± 0.8 K at 87°N and 91.7 ± 0.7 K at 88°S. The meridional distribution of temperature has a maximum near 10°S, consistent with Titans late northern winter.
Nature | 2004
F. M. Flasar; V. G. Kunde; R. K. Achterberg; Barney J. Conrath; A. A. Simon-Miller; C. A. Nixon; P. J. Gierasch; P. N. Romani; B. Bézard; Patrick G. J. Irwin; Gordon L. Bjoraker; John C. Brasunas; D. E. Jennings; J. C. Pearl; M. D. Smith; Glenn S. Orton; Linda J. Spilker; R. Carlson; Simon B. Calcutt; P. L. Read; F. W. Taylor; P. Parrish; A. Barucci; Régis Courtin; Athena Coustenis; Daniel Gautier; E. Lellouch; A. Marten; R. Prangé; Y. Biraud
The Earths equatorial stratosphere shows oscillations in which the east–west winds reverse direction and the temperatures change cyclically with a period of about two years. This phenomenon, called the quasi-biennial oscillation, also affects the dynamics of the mid- and high-latitude stratosphere and weather in the lower atmosphere. Ground-based observations have suggested that similar temperature oscillations (with a 4–5-yr cycle) occur on Jupiter, but these data suffer from poor vertical resolution and Jupiters stratospheric wind velocities have not yet been determined. Here we report maps of temperatures and winds with high spatial resolution, obtained from spacecraft measurements of infrared spectra of Jupiters stratosphere. We find an intense, high-altitude equatorial jet with a speed of ∼140 m s-1, whose spatial structure resembles that of a quasi-quadrennial oscillation. Wave activity in the stratosphere also appears analogous to that occurring on Earth. A strong interaction between Jupiter and its plasma environment produces hot spots in its upper atmosphere and stratosphere near its poles, and the temperature maps define the penetration of the hot spots into the stratosphere.
SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation | 1996
Virgil G. Kunde; Peter A. R. Ade; Richard D. Barney; D. Bergman; Jean-Francois Bonnal; R. Borelli; David Boyd; John C. Brasunas; Gregory Vallee Brown; Simon B. Calcutt; F. Carroll; R. Courtin; Jacky B. Cretolle; Julie A. Crooke; Martin A. Davis; S. Edberg; Rainer K. Fettig; M. Flasar; David A. Glenar; S. Graham; John G. Hagopian; Claef Hakun; Patricia Ann Hayes; L. Herath; Linda J. Spilker; Donald E. Jennings; Gabriel Karpati; C. Kellebenz; Brook Lakew; J. Lindsay
The composite infrared spectrometer (CIRS) is a remote sensing instrument to be flown on the Cassini orbiter. CIRS will retrieve vertical profiles of temperature and gas composition for the atmospheres of Titan and Saturn, from deep in their tropospheres to high in their stratospheres. CIRS will also retrieve information on the thermal properties and composition of Saturns rings and Saturnian satellites. CIRS consists of a pair of Fourier Transform Spectrometers (FTSs) which together cover the spectral range from 10-1400 cm-1 with a spectral resolution up to 0.5 cm-1. The two interferometers share a 50 cm beryllium Cassegrain telescope. The far-infrared FTS is a polarizing interferometer covering the 10-600 cm-1 range with a pair of thermopile detectors, and a 3.9 mrad field of view. The mid-infrared FTS is a conventional Michelson interferometer covering 200-1400 cm-1 in two spectral bandpasses: 600-1100 cm- 1100-1400 cm(superscript -1 with a 1 by 10 photovoltaic HgCdTe array. Each pixel of the arrays has an approximate 0.3 mrad field of view. The HgCdTe arrays are cooled to approximately 80K with a passive radiative cooler.
Applied Optics | 1997
John C. Brasunas; Cushman Gm
We show that uniform time sampling of both the reference and the target channels in a continuous scanning Fourier transform spectrometer is a simple and versatile way of extending the Nyquist limit shorter than the wavelength of the reference channel. We also discuss the benefits of recording the reference channel when intensity calibrating the target data.
Applied Optics | 1987
Virgil G. Kunde; John C. Brasunas; Barney J. Conrath; R. A. Hanel; Jay R. Herman; D. E. Jennings; William C. Maguire; D. W. Walser; J. N. Annen; M. J. Silverstein; Montasir Mahgoub Abbas; L. W. Herath; H. L. Buijs; J. N. Berube; J. McKinnon
The IR limb emission of the lower stratosphere has been measured using a balloon-borne liquid nitrogencooled Michelson interferometer with liquid helium-cooled Si:Ga detectors. Portions of the thermal emission spectrum have been recorded between 650 and 2000 cm(-1) with an unapodized spectral resolution of 0.03 cm(-1). This is the highest spectral resolution limb emission thus far obtained. A preliminary description is given of these data along with a discussion of the significant features. Species identified to date include CO(2), O(3), CFCl(3), CF(2)Cl(2), H(2)O, CH(4), HNO(3), N(2)O, NO(2), and ClONO(2). A tentative identification is made for NO, representing the first direct spectroscopic detection of NO in emission.
Journal of Geophysical Research | 1991
M. M. Abbas; Virgil G. Kunde; John C. Brasunas; Jay R. Herman; S. T. Massie
Infrared thermal emission spectra of the Earths atmosphere in the 700–2000 cm−1 region were obtained with a cryogenically cooled high-resolution interferometer spectrometer on a balloon flight from Palestine, Texas, on September 15–16, 1986. The observations exhibit spectral features of a number of stratospheric constituents, including important species of the reactive nitrogen family. In this paper we present an analysis of the observed data for simultaneously measured vertical distributions of O3, H2O, N2O, NO2, N2O5, HNO3, and ClONO2. These measurements permit the first direct determination of the nighttime total reactive nitrogen concentrations, and the partitioning of the important elements of the NOx family. Comparisons of the total reactive nitrogen budget are made with the measurements by the ATMOS experiment and with the predictions of one-dimensional and two-dimensional photochemical models.
Applied Optics | 1988
John C. Brasunas; Virgil G. Kunde; L. W. Herath
A cryogenic Fourier transform spectrometer has been built to measure thermal emission of the earths limb from a balloon-borne platform. Liquid nitrogen cooling of the spectrometer and liquid helium cooling of the detectors has provided sufficient sensitivity to detect, at 5-15 microm, fifteen molecular species relevant to stratospheric ozone chemistry. The spectral resolution achieved, 0.022 cm(-1), is the best yet attained for emission mode data at these wavelengths. The philosophy behind the design of the optical and electronic systems is presented, followed by an analysis of the performance achieved during balloon flight.
Superconductivity Applications for Infrared and Microwave Devices | 1990
John C. Brasunas; Virgil G. Kunde; S. H. Moseley; Brook Lakew
Past and present planetary exploration is briefly reviewed, and the planned 1996 Cassini mission to Saturn and Titan is examined. The CIRS experiment aboard Cassini, which will retrieve information on the atmospheres of Titan and Saturn, is discussed. Ongoing efforts to build a high-sensitivity, high-Tc bolometer that would greatly improve detection in Titans atmosphere are addressed.
Optical Engineering | 1995
John C. Brasunas; G. Mark Cushman
A simple technique is presented for estimating the thickness of a transparent plate. Using a laser source and detector, the transmitted light is measured as a function of angle of incidence. With prior knowledge of the refractive index of the plate at the laser wavelength, the observed fringes can be processed to estimate the plate thickness. The technique works with a modest degree of wedging, as long as fringes are discernible. Formal estimates of the error budget indicate the accuracy of this method is approximately 1 μm. If fringes are measured versus both angle and wavelength, it should be possible to estimate both thickness and refractive index.
Applied Optics | 2017
Donald E. Jennings; F. M. Flasar; V. G. Kunde; Conor A. Nixon; Marcia Segura; P. N. Romani; Nicolas Gorius; S. A. Albright; John C. Brasunas; R. C. Carlson; A. A. Mamoutkine; E. Guandique; M. S. Kaelberer; Shahid Aslam; Richard Karl Achterberg; Gordon L. Bjoraker; Carrie M. Anderson; V. Cottini; John C. Pearl; M. D. Smith; B. E. Hesman; Richard D. Barney; Simon B. Calcutt; Tim Vellacott; Linda J. Spilker; S. Edgington; S. M. Brooks; Peter A. R. Ade; Paul J. Schinder; Athena Coustenis
The Cassini spacecraft orbiting Saturn carries the composite infrared spectrometer (CIRS) designed to study thermal emission from Saturn and its rings and moons. CIRS, a Fourier transform spectrometer, is an indispensable part of the payload providing unique measurements and important synergies with the other instruments. It takes full advantage of Cassinis 13-year-long mission and surpasses the capabilities of previous spectrometers on Voyager 1 and 2. The instrument, consisting of two interferometers sharing a telescope and a scan mechanism, covers over a factor of 100 in wavelength in the mid and far infrared. It is used to study temperature, composition, structure, and dynamics of the atmospheres of Jupiter, Saturn, and Titan, the rings of Saturn, and surfaces of the icy moons. CIRS has returned a large volume of scientific results, the culmination of over 30 years of instrument development, operation, data calibration, and analysis. As Cassini and CIRS reach the end of their mission in 2017, we expect that archived spectra will be used by scientists for many years to come.