Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie M. Breitenbach is active.

Publication


Featured researches published by Julie M. Breitenbach.


Antiviral Research | 1999

Synthesis and antiviral activity of phosphoralaninate derivatives of methylenecyclopropane analogues of nucleosides

Yao-Ling Qiu; Roger G. Ptak; Julie M. Breitenbach; Ju-Sheng Lin; Yung-Chi Cheng; John C. Drach; Earl R. Kern; Jiri Zemlicka

Phenylmethylphosphoro-L-alaninate prodrugs of antiviral Z-methylenecyclopropane nucleoside analogues and their inactive E-isomers were synthesized and evaluated for their antiviral activity against HCMV, HSV-1, HSV-2, HHV-6, EBV, VZV, HIV-1 and HBV. The adenine Z-analogue was a potent inhibitor of all these viruses but it displayed cellular toxicity. The guanine Z-derivative was active against HCMV, HBV, EBV and VZV and it was not cytotoxic. The 2,6-diaminopurine analogue was the most potent against HIV-1 and HBV and somewhat less against HHV-6, HCMV, EBV and VZV in a non-cytotoxic concentration range. The 2-amino-6-cyclopropylamino and 2-amino-6-methoxypurine prodrugs were also more active than parent analogues against several viruses but with a less favorable cytotoxicity profile. In the E-series of analogues, adenine derivative was active against HIV-1, HBV and EBV, and it was non-cytotoxic. The guanine analogue exhibited a significant effect only against HBV. The 2,6-diaminopurine E-analogue was inactive with the exception of a single EBV assay. The 2-amino-6-methoxypurine Z-methylenecyclopropane nucleoside analogue was an effective inhibitor of HCMV, MCMV and EBV. The 2,6-diaminopurine Z-prodrug seems to be the best candidate for further development.


Molecular Pharmaceutics | 2008

Serine Peptide Phosphoester Prodrugs of Cyclic Cidofovir: Synthesis, Transport, and Antiviral Activity

Ulrika Eriksson; Larryn W. Peterson; Boris A. Kashemirov; John M. Hilfinger; John C. Drach; Katherine Z. Borysko; Julie M. Breitenbach; Jae Seung Kim; Stefanie Mitchell; Paul Kijek; Charles E. McKenna

Cidofovir (HPMPC, 1), a broad-spectrum antiviral agent, is currently used to treat AIDS-related human cytomegalovirus (HCMV) retinitis and has recognized therapeutic potential for orthopox virus infections, but is limited by its low oral bioavailability. Cyclic cidofovir (2) displays decreased nephrotoxicity compared to 1, while also exhibiting potent antiviral activity. Here we describe in detail the synthesis and evaluation as prodrugs of four cHPMPC dipeptide conjugates in which the free POH of 2 is esterified by the Ser side chain alcohol group of an X-L-Ser(OMe) dipeptide: 3 (X=L-Ala), 4 (X=L-Val), 5 (X=L-Leu), and 6 (X=L-Phe). Perfusion studies in the rat establish that the mesenteric permeability to 4 is more than 20-fold greater than to 1, and the bioavailability of 4 is increased 6-fold relative to 1 in an in vivo murine model. In gastrointestinal and liver homogenates, the cHPMPC prodrugs are rapidly hydrolyzed to 2. Prodrugs 3, 4, and 5 are nontoxic at 100 microM in HFF and KB cells and in cell-based plaque reduction assays had IC 50 values of 0.1-0.5 microM for HCMV and 10 microM for two orthopox viruses (vaccinia and cowpox). The enhanced transport properties of 3-6, conferred by incorporation of a biologically benign dipeptide moiety, and the facile cleavage of the Ser-O-P linkage suggest that these prodrugs represent a promising new approach to enhancing the bioavailability of 2.


Journal of Medicinal Chemistry | 2011

Tyrosine-Based 1-(S)-[3-Hydroxy-2-(phosphonomethoxy)propyl]cytosine and -adenine ((S)-HPMPC and (S)-HPMPA) Prodrugs: Synthesis, Stability, Antiviral Activity, and in Vivo Transport Studies

Valeria M. Zakharova; Michaela Serpi; Ivan S. Krylov; Larryn W. Peterson; Julie M. Breitenbach; Katherine Z. Borysko; John C. Drach; Mindy Collins; John M. Hilfinger; Boris A. Kashemirov; Charles E. McKenna

Eight novel single amino acid (6-11) and dipeptide (12, 13) tyrosine P-O esters of cyclic cidofovir ((S)-cHPMPC, 4) and its cyclic adenine analogue ((S)-cHPMPA, 3) were synthesized and evaluated as prodrugs. In vitro IC(50) values for the prodrugs (<0.1-50 μM) vs vaccinia, cowpox, human cytomegalovirus, and herpes simplex type 1 virus were compared to those for the parent drugs ((S)-HPMPC, 2; (S)-HPMPA, 1; IC(50) 0.3-35 μM); there was no cytoxicity with KB or HFF cells at ≤100 μM. The prodrugs exhibited a wide range of half-lives in rat intestinal homogenate at pH 6.5 (<30-1732 min) with differences of 3-10× between phostonate diastereomers. The tyrosine alkylamide derivatives of 3 and 4 were the most stable. (l)-Tyr-NH-i-Bu cHPMPA (11) was converted in rat or mouse plasma solely to two active metabolites and had significantly enhanced oral bioavailability vs parent drug 1 in a mouse model (39% vs <5%).


Antiviral Chemistry & Chemotherapy | 2000

Synthesis and enantioselectivity of the antiviral effects of (R,Z)-,(S,Z)-methylenecyclopropane analogues of purine nucleosides and phosphoralaninate prodrugs: influence of heterocyclic base, type of virus and host cells.

Yao-Ling Qiu; Geiser F; Kira T; Elizabeth A. Gullen; Yung-Chi Cheng; Roger G. Ptak; Julie M. Breitenbach; John C. Drach; Caroll B. Hartline; Earl R. Kern; Jiri Zemlicka

A series of R and S enantiomers of 2-aminopurine methylenecyclopropane analogues of nucleosides was synthesized. Two diastereoisomeric lipophilic phosphate prodrugs derived from R and S enantiomers of 2,6-diaminopurine analogue were also prepared. Enantioselectivity (diastereoselectivity in case of prodrugs) of in vitro antiviral effects was investigated with human and murine cytomegalovirus (HCMV and MCMV, respectively), herpes simplex virus types 1 and 2 (HSV-1 and HSV-2, respectively), human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), Epstein—Barr virus (EBV) and varicella zoster virus (VZV). Strong differences in enantioselectivity were found between the R and S enantiomers of adenine analogue and enantiomeric 2-aminopurine analogues. Thus, the enantiomers of adenine analogue were equipotent against HCMV but not MCMV, where the S enantiomer is strongly preferred. The same S preference was found throughout the 2-aminopurine series for both HCMV and MCMV. In contrast, R-synadenol in HIV-1 assays was the best agent, whereas the S enantiomers of moderately effective 2-amino-6-cyclo-propylamino and 2-amino-6-methoxypurine analogues were preferred. Little enantiomeric preference was found for R and S enantiomers of synadenol and the corresponding enantiomers of 2,6-diaminopurine analogue against HBV. A mixed pattern of enantioselectivity was observed for EBV depending on the type of host cells and assay. Against VZV, the R and S enantiomers of adenine analogue were equipotent or almost equipotent, but throughout the series of 2-aminopurine analogues a distinct preference for the S enantiomers was found. The stereoselectivity pattern of both diastereoisomeric prodrugs mostly followed enantioselectivity of the parent analogues. The varying enantioselectivities in the series of purine methylenecyclopropane analogues are probably a consequence of differences in the mechanisms of action in different virus/host cell systems.


Nucleosides, Nucleotides & Nucleic Acids | 1999

Acyclic sugar analogs of triciribine: lack of antiviral and antiproliferative activity correlate with low intracellular phosphorylation.

Anthony R. Porcari; Katherine Z. Borysko; Roger G. Ptak; Julie M. Breitenbach; Linda L. Wotring; John C. Drach; Leroy B. Townsend

Triciribine and triciribine monophosphate have antiviral and antiproliferative activity at low or submicromolar concentrations. In an effort to improve and better understand this activity, we have synthesized a series of acyclic analogs and evaluated them for activity against select viruses and cancer cell lines. We conclude that the rigid ribosyl ring system of triciribine must be intact in order to be phosphorylated and to obtain significant antiviral and antiproliferative activity.


Antimicrobial Agents and Chemotherapy | 2002

Inhibition of Cyclin-Dependent Kinase 1 by Purines and Pyrrolo[2,3-d]Pyrimidines Does Not Correlate with Antiviral Activity

David L. Evers; Julie M. Breitenbach; Katherine Z. Borysko; Leroy B. Townsend; John C. Drach

ABSTRACT We have previously shown that a series of nonnucleoside pyrrolo[2,3-d]pyrimidines selectively inhibit the replication of herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). These compounds act at the immediate-early or early stage of HCMV replication and have antiviral properties somewhat similar to those of roscovitine and olomoucine, specific inhibitors of cyclin-dependent kinases (cdks). In the present study we examine the hypothesis that pyrrolo[2,3-d]pyrimidines exert their antiviral effects by inhibition of cellular cdks. Much higher concentrations of a panel of pyrrolo[2,3-d]pyrimidine nucleoside analogs with antiviral activity were required to inhibit recombinant cdk1/cyclin B compared to the submicromolar concentrations required to inhibit HCMV and HSV-1 replication. 4,6-Diamino-5-cyano-7-(2-phenylethyl)pyrrolo[2,3-d]pyrimidine (compound 1369) was the best inhibitor of cdk1 and cyclin B, with a 50% inhibitory concentration (IC50; 14 μM) similar to that of roscovitine; it was competitive with respect to ATP (Ki = 14 μM). The potency of compound 1369 against cdk1 and cyclin B was similar to its cytotoxicity (IC50s, 32 to 100 μM) but not its antiviral efficacy (IC50s, 0.02 to 0.3 μM). Thus, our results indicated the null hypothesis. In contrast, roscovitine was only weakly active against HSV-1 (IC50, 38 μM) and HCMV (IC50, 40 μM). These values were similar to those derived by cytotoxicity and cell growth inhibition assays, thereby suggesting that roscovitine is not a selective antiviral. Therefore, we propose that inhibition of cdk1 and cyclin B is not responsible for selective antiviral activity and that pyrrolo[2,3-d]pyrimidines constitute novel pharmacophores which compete with ATP to inhibit cdk1 and cyclin B.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis, transport and antiviral activity of Ala–Ser and Val–Ser prodrugs of cidofovir

Larryn W. Peterson; Jaeseung Kim; Paul Kijek; Stefanie Mitchell; John M. Hilfinger; Julie M. Breitenbach; Kathy Borysko; John C. Drach; Boris A. Kashemirov; Charles E. McKenna

We report the synthesis and biological evaluation of Ala-(Val-)l-Ser-CO(2)R prodrugs of 1, where a dipeptide promoiety is conjugated to the P(OH)(2) group of cidofovir (1) via esterification by the Ser side chain hydroxyl group and an ethyl group (4 and 5) or alone (6 and 7). In a murine model, oral administration of 4 or 5 did not significantly increase total cidofovir species in the plasma compared to 1 or 2, but 7 resulted in a 15-fold increase in a rat model and had an in vitro EC(50) value against human cytomegalovirus comparable to 1. Neither 6 nor 7 exhibited toxicity up to 100 μM in KB or HFF cells.


Nucleosides, Nucleotides & Nucleic Acids | 2003

Synthesis and Antiviral Activity of 2-Substituted Analogs of Triciribine

Anthony Porcari; Roger G. Ptak; Katherine Z. Borysko; Julie M. Breitenbach; John C. Drach; Leroy B. Townsend

Abstract Triciribine (TCN) and triciribine monophosphate (TCN-P) have antiviral and antineoplastic activity at low or submicromolar concentrations. In an effort to improve and better understand this activity, we have conducted a structure-activity relationship study to explore the effect of substitutions at the 2-position of triciribine. 2-Methyl-(2-Me-TCN), 2-ethyl-(2-Et-TCN), 2-phenyl-(2-Ph-TCN), 2-chloro-(2-Cl-TCN), and 2-aminotriciribine(2-NH2-TCN) were designed and synthesized to determine the effects of substitutions at the 2-position which change the steric, electronic, and hydrophobic properties of TCN, while maintaining the integrity of the tricyclic ring system. These compounds were evaluated for activity against human immunodeficiency virus (HIV-1), herpes simplex virus type 1 (HSV-1), and human cytomegalovirus (HCMV) and were found to be either less active than TCN and TCN-P or inactive at the highest concentrations tested, 100 µM. We conclude that substitutions at the 2-position of triciribine adversely affect the antiviral activity most likely because these analogs are not phosphorylated to active metabolites.


Nucleosides, Nucleotides & Nucleic Acids | 1999

Methylenecyclopropane Analogues of Nucleosides: Synthesis, Absolute Configuration, and Enantioselectivity of Antiviral Effect of (R)-(-)- and (S)-(+)-Synadenol

Yao-Ling Qiu; Andrew Hempel; Norman Camerman; Camerman A; Geiser F; Roger G. Ptak; Julie M. Breitenbach; Kira T; Ling Li; Elizabeth A. Gullen; Yung-Chi Cheng; John C. Drach; Jiri Zemlicka

Synthesis, absolute configuration and antiviral activity of enantiomeric antiviral agents (R)-(-)- and (S)-(+)-synadenol (2 and 3a) are described.


Antimicrobial Agents and Chemotherapy | 2015

Human Cytomegalovirus Resistance to Deoxyribosylindole Nucleosides Maps to a Transversion Mutation in the Terminase Subunit-Encoding Gene UL89

Brian G. Gentry; Quang Phan; Ellie D. Hall; Julie M. Breitenbach; Katherine Z. Borysko; Jeremy P. Kamil; Leroy B. Townsend; John C. Drach

ABSTRACT Human cytomegalovirus (HCMV) infection can cause severe illnesses, including encephalopathy and mental retardation, in immunocompromised and immunologically immature patients. Current pharmacotherapies for treating systemic HCMV infections include ganciclovir, cidofovir, and foscarnet. However, long-term administration of these agents can result in serious adverse effects (myelosuppression and/or nephrotoxicity) and the development of viral strains with reduced susceptibility to drugs. The deoxyribosylindole (indole) nucleosides demonstrate a 20-fold greater activity in vitro (the drug concentration at which 50% of the number of plaques was reduced with the presence of drug compared to the number in the absence of drug [EC50] = 0.34 μM) than ganciclovir (EC50 = 7.4 μM) without any observed increase in cytotoxicity. Based on structural similarity to the benzimidazole nucleosides, we hypothesize that the indole nucleosides target the HCMV terminase, an enzyme responsible for packaging viral DNA into capsids and cleaving the DNA into genome-length units. To test this hypothesis, an indole nucleoside-resistant HCMV strain was isolated, the open reading frames of the genes that encode the viral terminase were sequenced, and a G766C mutation in exon 1 of UL89 was identified; this mutation resulted in an E256Q change in the amino acid sequence of the corresponding protein. An HCMV wild-type strain, engineered with this mutation to confirm resistance, demonstrated an 18-fold decrease in susceptibility to the indole nucleosides (EC50 = 3.1 ± 0.7 μM) compared to that of wild-type virus (EC50 = 0.17 ± 0.04 μM). Interestingly, this mutation did not confer resistance to the benzimidazole nucleosides (EC50 for wild-type HCMV = 0.25 ± 0.04 μM, EC50 for HCMV pUL89 E256Q = 0.23 ± 0.04 μM). We conclude, therefore, that the G766C mutation that results in the E256Q substitution is unique for indole nucleoside resistance and distinct from previously discovered substitutions that confer both indole and benzimidazole nucleoside resistance (D344E and A355T).

Collaboration


Dive into the Julie M. Breitenbach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris A. Kashemirov

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles E. McKenna

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge