Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Frelka is active.

Publication


Featured researches published by John C. Frelka.


Journal of Food Protection | 2015

Prevalence of Escherichia coli O157:H7 and Salmonella on Inshell California Walnuts

Gordon R. Davidson; John C. Frelka; Mai Yang; Thomas M. Jones; Linda J. Harris

Inshell walnuts collected from California walnut handlers over four harvests were evaluated for the presence of Escherichia coli O157:H7 and Salmonella. E. coli O157:H7 was not detected in any of 2,903 375-g samples evaluated in 2011, 2012, and 2013 (<0.034% prevalence; 95% confidence interval [CI], 0 to 0.13%). Salmonella was not isolated from any of the 935 samples in 2010 (100 g evaluated; <0.11% prevalence; 95% CI, 0 to 0.41%) but was isolated from 2 of 905 (375 g; 0.22% prevalence; 95% CI, 0.061 to 0.80%), 1 of 998 (375 g; 0.10% prevalence; 95% CI, 0.018 to 0.56%), and 1 of 1,000 (375 g; 0.10% prevalence; 95% CI, 0.018 to 0.56%) samples in 2011, 2012, and 2013, respectively, for an average annual prevalence of 0.14% (375 g; 95% CI, 0.054 to 0.35%). The levels of Salmonella in positive samples determined by a modified most-probable-number (MPN) method were estimated to be 0.32 to 0.42 MPN/100 g (95% CI, 0.045 to 3.6 MPN/100 g).


Journal of Food Science | 2017

Composition‐Based Prediction of Temperature‐Dependent Thermophysical Food Properties: Reevaluating Component Groups and Prediction Models

David M. Phinney; John C. Frelka; Dennis R. Heldman

Prediction of temperature-dependent thermophysical properties (thermal conductivity, density, specific heat, and thermal diffusivity) is an important component of process design for food manufacturing. Current models for prediction of thermophysical properties of foods are based on the composition, specifically, fat, carbohydrate, protein, fiber, water, and ash contents, all of which change with temperature. The objectives of this investigation were to reevaluate and improve the prediction expressions for thermophysical properties. Previously published data were analyzed over the temperature range from 10 to 150 °C. These data were analyzed to create a series of relationships between the thermophysical properties and temperature for each food component, as well as to identify the dependence of the thermophysical properties on more specific structural properties of the fats, carbohydrates, and proteins. Results from this investigation revealed that the relationships between the thermophysical properties of the major constituents of foods and temperature can be statistically described by linear expressions, in contrast to the current polynomial models. Links between variability in thermophysical properties and structural properties were observed. Relationships for several thermophysical properties based on more specific constituents have been identified. Distinctions between simple sugars (fructose, glucose, and lactose) and complex carbohydrates (starch, pectin, and cellulose) have been proposed. The relationships between the thermophysical properties and proteins revealed a potential correlation with the molecular weight of the protein. The significance of relating variability in constituent thermophysical properties with structural properties--such as molecular mass--could significantly improve composition-based prediction models and, consequently, the effectiveness of process design.


Journal of Food Protection | 2016

Changes in Aerobic Plate and Escherichia coli–Coliform Counts and in Populations of Inoculated Foodborne Pathogens on Inshell Walnuts during Storage

John C. Frelka; Gordon R. Davidson; Linda J. Harris

After harvest, inshell walnuts are dried using low-temperature forced air and are then stored in bins or silos for up to 1 year. To better understand the survival of bacteria on inshell walnuts, aerobic plate counts (APCs) and Escherichia coli?coliform counts (ECCs) were evaluated during commercial storage (10 to 12°C and 63 to 65% relative humidity) over 9 months. APCs decreased by 1.4 to 2.0 log CFU per nut during the first 5 months of storage, and ECCs decreased by 1.3 to 2.2 log CFU per nut in the first month of storage. Through the remaining 4 to 8 months of storage, APCs and ECCs remained unchanged (P > 0.05) or decreased by <0.15 log CFU per nut per month. Similar trends were observed on kernels extracted from the inshell walnuts. APCs and ECCs were consistently and often significantly higher on kernels extracted from visibly broken inshell walnuts than on kernels extracted from visibly intact inshell walnuts. Parameters measured in this study were used to determine the survival of five-strain cocktails of E. coli O157:H7, Listeria monocytogenes, and Salmonella inoculated onto freshly hulled inshell walnuts (∼8 log CFU/g) after simulated commercial drying (10 to 12 h; 40°C) and simulated commercial storage (12 months at 10°C and 65% relative humidity). Populations declined by 2.86, 5.01, and 4.40 log CFU per nut for Salmonella, E. coli O157:H7, and L. monocytogenes, respectively, after drying and during the first 8 days of storage. Salmonella populations changed at a rate of -0.33 log CFU per nut per month between days 8 and 360, to final levels of 2.83 ± 0.79 log CFU per nut. E. coli and L. monocytogenes populations changed by -0.17 log CFU per nut per month and -0.26 log CFU per nut per month between days 8 and 360, respectively. For some samples, E. coli or L. monocytogenes populations were below the limit of detection by plating (0.60 log CFU per nut) by day 183 or 148, respectively; at least one of the six samples was positive at each subsequent sampling time by either plating or by enrichment.


Journal of Food Science | 2017

Reverse Stability Kinetics of Meat Pigment Oxidation in Aqueous Extract from Fresh Beef

John C. Frelka; David M. Phinney; Macdonald Wick; Dennis R. Heldman

The use of kinetic models is an evolving approach to describing quality changes in foods during processes, including storage. Previous studies indicate that the oxidation rate of myoglobin is accelerated under frozen storage conditions, a phenomenon termed reverse stability. The goal of this study was to develop a model for meat pigment oxidation to incorporate the phenomenon of reverse stability. In this investigation, the model system was an aqueous extract from beef which was stored under a range of temperatures, both unfrozen and frozen. The kinetic analysis showed that in unfrozen solutions, the temperature dependence of oxidation rate followed Arrhenius kinetics. However, under in frozen solutions the rate of oxidation increased with decreasing temperature until reaching a local maximum around -20 °C. The addition of NaCl to the model system increased oxidation rates at all temperatures, even above the initial freezing temperature. This observation suggests that this reaction is dependent on the ionic strength of the solution as well as temperature. The mechanism of this deviant kinetic behavior is not fully understood, but this study shows that the interplay of temperature and composition on the rate of oxidation of meat pigments is complicated and may involve multiple mechanisms. PRACTICAL APPLICATION A better understanding of the kinetics of quality loss in a meat system allows for a re-examination of the current recommendations for frozen storage. The deviant kinetic behavior observed in this study indicates that the relationship between quality loss and temperature in a frozen food is not as simple as once thought. Product-specific recommendations could be implemented in the future that would allow for a decrease in energy consumption without a significant loss of quality.


Food Chemistry | 2017

Effect of solvent addition sequence on lycopene extraction efficiency from membrane neutralized caustic peeled tomato waste

David M. Phinney; John C. Frelka; Jessica L. Cooperstone; Steven J. Schwartz; Dennis R. Heldman

Lycopene is a high value nutraceutical and its isolation from waste streams is often desirable to maximize profits. This research investigated solvent addition order and composition on lycopene extraction efficiency from a commercial tomato waste stream (pH 12.5, solids ∼5%) that was neutralized using membrane filtration. Constant volume dilution (CVD) was used to desalinate the caustic salt to neutralize the waste. Acetone, ethanol and hexane were used as direct or blended additions. Extraction efficiency was defined as the amount of lycopene extracted divided by the total lycopene in the sample. The CVD operation reduced the active alkali of the waste from 0.66 to <0.01M and the moisture content of the pulp increased from 93% to 97% (wet basis), showing the removal of caustic salts from the waste. Extraction efficiency varied from 32.5% to 94.5%. This study demonstrates a lab scale feasibility to extract lycopene efficiently from tomato processing byproducts.


Archive | 2014

Nuts and Nut Pastes

John C. Frelka; Linda J. Harris

Worldwide nut production has expanded rapidly in recent years with a corresponding increase in consumption. Large outbreaks of salmonellosis have been associated with nuts and their products during this same time period, which has resulted in a major shift in the approach used to process these products. A brief overview of the history and use of nuts and differences in production and harvest practices of several major nuts are presented in this chapter. The association of foodborne pathogens with nuts is discussed in the context of outbreaks, recalls, and surveys. Potential routes of contamination of nuts with foodborne pathogens are presented along with an overview of current thermal and nonthermal methods for the reduction of pathogens and the factors affecting their efficacy.


Journal of the Science of Food and Agriculture | 2018

Assessment of chicken breast meat quality after freeze/thaw abuse using magnetic resonance imaging techniques: Chicken meat MRI

John C. Frelka; David M. Phinney; Xiangyu Yang; Michael V. Knopp; Dennis R. Heldman; Macdonald Wick; Yael Vodovotz

BACKGROUND Freezing/thawing meat can result in quality losses as a result of the formation, melting and reformation of ice. These changes in water state can result in alterations in texture, water holding and other key quality attributes. It was hypothesized that magnetic resonance imaging (MRI) could quantify changes in mobility and localization of water as a function of freezing/thawing, which could be correlated with quality measurements. RESULTS Drip loss increased significantly for unbrined samples by over 100% after each freeze/thaw cycle (1.5% to 3.3% to 5.3% drip loss). Brine uptake decreased 50% after 2 cycles (from 53% to 28% mass uptake). Drip loss for brined samples increased after 2 cycles; other attributes were not significantly affected. MRI showed brined samples had less change in both proton density and T2 distributions. High-field nuclear magnetic resonance (NMR) imaging showed greater change in T2 distributions. CONCLUSION As freeze/thaw damage increased, meat quality was reduced in both brined and unbrined chicken breasts, with more prominent changes in unbrined meat. These decreases in quality correlated with changes, albeit small, in water mobility and localization as measured by MRI. High-field NMR micro-imaging showed more dramatic changes in T2 distributions in unbrined samples. These MRI techniques are shown to be useful in the assessment of meat quality after freeze/thaw abuse.


Journal of Food Science | 2017

Effect of Freezing Rate and Microwave Thawing on Texture and Microstructural Properties of Potato (Solanum tuberosum)

David M. Phinney; John C. Frelka; Anita Wickramasinghe; Dennis R. Heldman

Food freezing is a preservation process that works by lowering temperature while simultaneously decreasing water activity. It is accepted that although freezing preserves foods, it generally has a negative effect on textural quality. This research investigated the texture response of potatoes (Solanum tuberosum) as a function of time to freeze (defined as the time for the center temperature to reach -20 °C) and thawing process. Potatoes slices (6 mm) were blanched then frozen in an ethanol/carbon dioxide bath, a pilot scale high velocity air freezer (HVAF) and a still air freezer to achieve various times to freeze. Slices were stabilized at -20 °C and thawed by 2 methods; room temperature air and microwave. Afterwards, samples were allowed to come to room temperature prior to texture profile analysis (TPA). Results indicate a maximum texture loss of the potato was reached at a time to freeze of approximately 8 min (corresponding to the HVAF). The texture difference between room temperature and microwave thawing methods was not shown to be significant (P = 0.05). SEM images showed the cellular structure of the potato in a HVAF to be similar to that of the still air freezer, validating that the matrix was maximally damaged in both conditions. This work created a continuous quality loss model for the potato as a function of time to freeze and showed no textural benefit to high velocity over still air freezing.


Food Microbiology | 2015

Evaluation of microbial loads and the effects of antimicrobial sprays in postharvest handling of California walnuts

John C. Frelka; Linda J. Harris


Food protection trends | 2016

Efficacy of Peracetic Acid–based Sprays against Microbial Loads on Conveyors in a Walnut Hulling Facility

Gordon R. Davidson; John C. Frelka; Linda J. Harris

Collaboration


Dive into the John C. Frelka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael V. Knopp

The Ohio State University Wexner Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge