John C. Gant
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John C. Gant.
Aging Cell | 2007
Olivier Thibault; John C. Gant; Philip W. Landfield
Evidence accumulated over more than two decades has implicated Ca2+ dysregulation in brain aging and Alzheimers disease (AD), giving rise to the Ca2+ hypothesis of brain aging and dementia. Electrophysiological, imaging, and behavioral studies in hippocampal or cortical neurons of rodents and rabbits have revealed aging‐related increases in the slow afterhyperpolarization, Ca2+ spikes and currents, Ca2+ transients, and L‐type voltage‐gated Ca2+ channel (L‐VGCC) activity. Several of these changes have been associated with age‐related deficits in learning or memory. Consequently, one version of the Ca2+ hypothesis has been that increased L‐VGCC activity drives many of the other Ca2+‐related biomarkers of hippocampal aging. In addition, other studies have reported aging‐ or AD model‐related alterations in Ca2+ release from ryanodine receptors (RyR) on intracellular stores. The Ca2+‐sensitive RyR channels amplify plasmalemmal Ca2+ influx by the mechanism of Ca2+‐induced Ca2+ release (CICR). Considerable evidence indicates that a preferred functional link is present between L‐VGCCs and RyRs which operate in series in heart and some brain cells. Here, we review studies implicating RyRs in altered Ca2+ regulation in cell toxicity, aging, and AD. A recent study from our laboratory showed that increased CICR plays a necessary role in the emergence of Ca2+‐related biomarkers of aging. Consequently, we propose an expanded L‐VGCC/Ca2+ hypothesis, in which aging/pathological changes occur in both L‐type Ca2+ channels and RyRs, and interact to abnormally amplify Ca2+ transients. In turn, the increased transients result in dysregulation of multiple Ca2+‐dependent processes and, through somewhat different pathways, in accelerated functional decline during aging and AD.
The Journal of Neuroscience | 2012
Jennifer L. Furman; Diana M. Sama; John C. Gant; Tina L. Beckett; M. Paul Murphy; Adam D. Bachstetter; Linda J. Van Eldik; Christopher M. Norris
Astrocytes are the most abundant cell type in the brain and play a critical role in maintaining healthy nervous tissue. In Alzheimers disease (AD) and most other neurodegenerative disorders, many astrocytes convert to a chronically “activated” phenotype characterized by morphologic and biochemical changes that appear to compromise protective properties and/or promote harmful neuroinflammatory processes. Activated astrocytes emerge early in the course of AD and become increasingly prominent as clinical and pathological symptoms progress, but few studies have tested the potential of astrocyte-targeted therapeutics in an intact animal model of AD. Here, we used adeno-associated virus (AAV) vectors containing the astrocyte-specific Gfa2 promoter to target hippocampal astrocytes in APP/PS1 mice. AAV–Gfa2 vectors drove the expression of VIVIT, a peptide that interferes with the immune/inflammatory calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway, shown by our laboratory and others to orchestrate biochemical cascades leading to astrocyte activation. After several months of treatment with Gfa2–VIVIT, APP/PS1 mice exhibited improved cognitive and synaptic function, reduced glial activation, and lower amyloid levels. The results confirm a deleterious role for activated astrocytes in AD and lay the groundwork for exploration of other novel astrocyte-based therapies.
The Journal of Neuroscience | 2009
Inga Kadish; Olivier Thibault; Eric M. Blalock; Kuey-C. Chen; John C. Gant; Nada M. Porter; Philip W. Landfield
Multiple hippocampal processes and cognitive functions change with aging or Alzheimers disease, but the potential triggers of these aging cascades are not well understood. Here, we quantified hippocampal expression profiles and behavior across the adult lifespan to identify early aging changes and changes that coincide with subsequent onset of cognitive impairment. Well powered microarray analyses (N = 49 arrays), immunohistochemistry, and Morris spatial maze learning were used to study male F344 rats at five age points. Genes that changed with aging (by ANOVA) were assigned to one of four onset age ranges based on template pattern matching; functional pathways represented by these genes were identified statistically (Gene Ontology). In the earliest onset age range (3–6 months old), upregulation began for genes in lipid/protein catabolic and lysosomal pathways, indicating a shift in metabolic substrates, whereas downregulation began for lipid synthesis, GTP/ATP-dependent signaling, and neural development genes. By 6–9 months of age, upregulation of immune/inflammatory cytokines was pronounced. Cognitive impairment first appeared in the midlife range (9–12 months) and coincided and correlated primarily with midlife upregulation of genes associated with cholesterol trafficking (apolipoprotein E), myelinogenic, and proteolytic/major histocompatibility complex antigen-presenting pathways. Immunolabeling revealed that cholesterol trafficking proteins were substantially increased in astrocytes and that myelination increased with aging. Together, our data suggest a novel sequential model in which an early-adult metabolic shift, favoring lipid/ketone body oxidation, triggers inflammatory degradation of myelin and resultant excess cholesterol that, by midlife, activates cholesterol transport from astrocytes to remyelinating oligodendrocytes. These processes may damage structure and compete with neuronal pathways for bioenergetic resources, thereby impairing cognitive function.
The Journal of Neuroscience | 2006
John C. Gant; Michelle M. Sama; Philip W. Landfield; Olivier Thibault
Age-dependent changes in multiple Ca2+-related electrophysiological processes in the hippocampus appear to be consistent biomarkers of aging, and several also correlate with cognitive decline. These findings have led to the hypothesis that a common mechanism of Ca2+ dyshomeostasis underlies aspects of aging-dependent brain impairment. However, some key predictions of this view remain untested, including that multiple Ca2+-related biomarkers should emerge concurrently during aging and their onset should also precede/coincide with initial signs of cognitive decline. Moreover, blocking a putative common source of dysregulated Ca2+ should eliminate aging differences. Here, we tested these predictions using combined electrophysiological, imaging, and pharmacological approaches in CA1 neurons to determine the ages of onset (across 4-, 10-, 12-, 14-, and 23-month-old F344 rats) of several established biomarkers, including the increases in the slow afterhyperpolarization, spike accommodation, and [Ca2+]i rise during repetitive synaptic stimulation. In addition, we tested the hypothesis that altered Ca2+-induced Ca2+ release (CICR) from ryanodine receptors, which can be triggered by L-type Ca2+ channels, provides a common source of dysregulated Ca2+ in aging. Results showed that multiple aging biomarkers were first detectable at about the same age (12 months of age; approximately midlife), sufficiently early to influence initial cognitive decline. Furthermore, selectively blocking CICR with ryanodine slowed the Ca2+ rise during synaptic stimulation more in aged rat neurons and, notably, reduced or eliminated aging differences in the biomarkers. Thus, this study provides the first evidence that altered CICR plays a role in driving the early and simultaneous emergence in hippocampus of multiple Ca2+-related biomarkers of aging.
Epilepsia | 2009
John C. Gant; Oliver Thibault; Eric M. Blalock; Jun Yang; Adam D. Bachstetter; James Kotick; Paula Elyse Schauwecker; Kurt F. Hauser; George M. Smith; Ron Mervis; YanFang Li; Gregory N. Barnes
Purpose: Clinically, perturbations in the semaphorin signaling system have been associated with autism and epilepsy. The semaphorins have been implicated in guidance, migration, differentiation, and synaptic plasticity of neurons. The semaphorin 3F (Sema3F) ligand and its receptor, neuropilin 2 (NPN2) are highly expressed within limbic areas. NPN2 signaling may intimately direct the apposition of presynaptic and postsynaptic locations, facilitating the development and maturity of hippocampal synaptic function. To further understand the role of NPN2 signaling in central nevous system (CNS) plasticity, structural and functional alterations were assessed in NPN2 deficient mice.
The Journal of Neuroscience | 2011
John C. Gant; Kuey-Chu Chen; Christopher M. Norris; Inga Kadish; Olivier Thibault; Eric M. Blalock; Nada M. Porter; Philip W. Landfield
With aging, multiple Ca2+-associated electrophysiological processes exhibit increased magnitude in hippocampal pyramidal neurons, including the Ca2+-dependent slow afterhyperpolarization (sAHP), L-type voltage-gated Ca2+ channel (L-VGCC) activity, Ca2+-induced Ca2+ release (CICR) from ryanodine receptors (RyRs), and Ca2+ transients. This pattern of Ca2+ dysregulation correlates with reduced neuronal excitability/plasticity and impaired learning/memory and has been proposed to contribute to unhealthy brain aging and Alzheimers disease. However, little is known about the underlying molecular mechanisms. In cardiomyocytes, FK506-binding protein 1b/12.6 (FKBP1b) binds and stabilizes RyR2 in the closed state, inhibiting RyR-mediated Ca2+ release. Moreover, we recently found that hippocampal Fkbp1b expression is downregulated, whereas Ryr2 and Frap1/Mtor (mammalian target of rapamycin) expression is upregulated with aging in rats. Here, we tested the hypothesis that disrupting FKBP1b function also destabilizes Ca2+ homeostasis in hippocampal neurons and is sufficient to induce the aging phenotype of Ca2+ dysregulation in young animals. Selective knockdown of Fkbp1b with interfering RNA in vitro (96 h) enhanced voltage-gated Ca2+ current in cultured neurons, whereas in vivo Fkbp1b knockdown by microinjection of viral vector (3–4 weeks) dramatically increased the sAHP in hippocampal slice neurons from young-adult rats. Rapamycin, which displaces FKBP1b from RyRs in myocytes, similarly enhanced VGCC current and the sAHP and also increased CICR. Moreover, FKBP1b knockdown in vivo was associated with upregulation of RyR2 and mTOR protein expression. Thus, disruption of FKBP1b recapitulated much of the Ca2+-dysregulation aging phenotype in young rat hippocampus, supporting a novel hypothesis that declining FKBP function plays a major role in unhealthy brain aging.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2016
Shaniya Maimaiti; Katie L. Anderson; Chris DeMoll; Lawrence D. Brewer; Benjamin A. Rauh; John C. Gant; Eric M. Blalock; Nada M. Porter; Olivier Thibault
Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimers disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca(2+)-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP.
Neurobiology of Aging | 2009
John C. Gant; Olivier Thibault
At hippocampal synapses, repetitive synaptic stimulation (RSS) in the theta frequency range (3-12Hz) is associated with robust EPSP frequency facilitation (FF) and consequently, enhanced action potential (spike) generation and throughput. A complex, synaptically induced hyperpolarization (SIHP) is also triggered by synaptic activation, and a Ca(2+)-dependent afterhyperpolarization (AHP) is triggered above spike threshold. With aging, the AHP is increased and impairs intracellular spike generation, at least in accommodation protocols. However, little is known about how these aging changes interact to affect spike generation at physiological frequencies of RSS, or if the SIHP also is modified in aging. Here we performed the first tests of the net impact of these excitatory and inhibitory aging changes on spike generation during RSS. We report that during RSS at spike threshold (1) spike throughput is well sustained at theta frequencies in young and aged neurons; (2) an interposed AHP dampens spike generation, particularly in aged neurons and at higher frequencies; (3) compared to the AHP, the SIHP does not exert an equivalent inhibitory effect on spike throughput; and (4) in contrast to the AHP, the SIHP is reduced with aging. Together, these results are consistent with a model in which the source of the hyperpolarization is important in determining hippocampal spike throughput within the theta frequency range.
The Journal of Neuroscience | 2015
John C. Gant; Kuey-Chu Chen; Inga Kadish; Eric M. Blalock; Olivier Thibault; Nada M. Porter; Philip W. Landfield
Brain Ca2+ regulatory processes are altered during aging, disrupting neuronal, and cognitive functions. In hippocampal pyramidal neurons, the Ca2+-dependent slow afterhyperpolarization (sAHP) exhibits an increase with aging, which correlates with memory impairment. The increased sAHP results from elevated L-type Ca2+ channel activity and ryanodine receptor (RyR)-mediated Ca2+ release, but underlying molecular mechanisms are poorly understood. Previously, we found that expression of the gene encoding FK506-binding protein 12.6/1b (FKBP1b), a small immunophilin that stabilizes RyR-mediated Ca2+ release in cardiomyocytes, declines in hippocampus of aged rats and Alzheimers disease subjects. Additionally, knockdown/disruption of hippocampal FKBP1b in young rats augments neuronal Ca2+ responses. Here, we test the hypothesis that declining FKBP1b underlies aging-related hippocampal Ca2+ dysregulation. Using microinjection of adeno-associated viral vector bearing a transgene encoding FKBP1b into the hippocampus of aged male rats, we assessed the critical prediction that overexpressing FKBP1b should reverse Ca2+-mediated manifestations of brain aging. Immunohistochemistry and qRT-PCR confirmed hippocampal FKBP1b overexpression 4–6 weeks after injection. Compared to aged vector controls, aged rats overexpressing FKBP1b showed dramatic enhancement of spatial memory, which correlated with marked reduction of sAHP magnitude. Furthermore, simultaneous electrophysiological recording and Ca2+ imaging in hippocampal neurons revealed that the sAHP reduction was associated with a decrease in parallel RyR-mediated Ca2+ transients. Thus, hippocampal FKBP1b overexpression reversed key aspects of Ca2+ dysregulation and cognitive impairment in aging rats, supporting the novel hypothesis that declining FKBP1b is a molecular mechanism underlying aging-related Ca2+ dysregulation and unhealthy brain aging and pointing to FKBP1b as a potential therapeutic target. SIGNIFICANCE STATEMENT This paper reports critical tests of a novel hypothesis that proposes a molecular mechanism of unhealthy brain aging and possibly, Alzheimers disease. For more than 30 years, evidence has been accumulating that brain aging is associated with dysregulation of calcium in neurons. Recently, we found that FK506-binding protein 12.6/1b (FKBP1b), a small protein that regulates calcium, declines with aging in the hippocampus, a brain region important for memory. Here we used gene therapy approaches and found that raising FKBP1b reversed calcium dysregulation and memory impairment in aging rats, allowing them to perform a memory task as well as young rats. These studies identify a potential molecular mechanism of brain aging and may also have implications for treatment of Alzheimers disease.
European Journal of Pharmacology | 2014
John C. Gant; Eric M. Blalock; Kuey-Chu Chen; Inga Kadish; Nada M. Porter; Christopher M. Norris; Olivier Thibault; Philip W. Landfield
It has been recognized for some time that the Ca(2+)-dependent slow afterhyperpolarization (sAHP) is larger in hippocampal neurons of aged compared with young animals. In addition, extensive studies since have shown that other Ca(2+)-mediated electrophysiological responses are increased in hippocampus with aging, including Ca(2+) transients, L-type voltage-gated Ca(2+) channel activity, Ca(2+) spike duration and action potential accommodation. Elevated Ca(2+)-induced Ca(2+) release from ryanodine receptors (RyRs) appears to drive amplification of the Ca(2+) responses. Components of this Ca(2+) dysregulation phenotype correlate with deficits in cognitive function and plasticity, indicating they may play critical roles in aging-related impairment of brain function. However, the molecular mechanisms underlying aging-related Ca(2+) dysregulation are not well understood. FK506-binding proteins 1a and 1b (FKBP1a/1b, also known as FKBP12/12.6) are immunophilin proteins that bind the immunosuppressant drugs FK506 and rapamycin. In muscle cells, FKBP1a/1b also bind RyRs and inhibits Ca(2+)-induced Ca(2+) release, but it is not clear whether FKBPs act similarly in brain cells. Recently, we found that selectively disrupting hippocampal FKBP1b function in young rats, either by microinjecting adeno-associated viral vectors expressing siRNA, or by treatment with rapamycin, increases the sAHP and recapitulates much of the hippocampal Ca(2+) dysregulation phenotype. Moreover, in microarray studies, we found FKBP1b gene expression was downregulated in hippocampus of aging rats and early-stage Alzheimers disease subjects. These results suggest the novel hypothesis that declining FKBP function is a key factor in aging-related Ca(2+) dysregulation in the brain and point to potential new therapeutic targets for counteracting unhealthy brain aging.