John C. Lehrter
United States Environmental Protection Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John C. Lehrter.
Estuaries and Coasts | 2006
James D. Hagy; John C. Lehrter; Michael C. Murrell
Pensacola Bay, Florida, was in the strong northeast quadrant of Hurricane Ivan when it made landfall on September 16, 2004 as a category 3 hurricane on the Saffir-Simpson scale. We present data describing the timeline and maximum height of the storm surge, the extent of flooding of coastal land, and the magnitude of the freshwater inflow pulse that followed the storm. We computed the magnitude of tidal flushing associated with the surge using a tidal prism model. We also evaluated hurricane effects on water quality using water quality surveys conducted 20 and 50 d after the storm, which we compared with a survey 14 d before landfall. We evaluated the scale of hurricane effects relative to normal variability using a 5-yr monthly record. Ivans 3.5 m storm surge inundated 165 km2 of land, increasing the surface area of Pensacola Bay by 50% and its volume by 230%. The model suggests that 60% of the Bays volume was flushed, initially increasing the average salinity of Bay waters from 23 to 30 and lowering nutrient and chlorophylla concentrations. Additional computations suggest that wind forcing was sufficient to completely mix the water column during the storm. Freshwater discharge from the largest river increased twentyfold during the subsequent 4 d, stimulating a modest phytoplankton bloom (chlorophyll up to 18 μg l−1) and maintaining hypoxia for several months. Although the immediate physical perturbation was extreme, the water quality effects that persisted beyond the first several days were within the normal range of variability for this system. In terms of water quality and phytoplankton productivity effects, this ecosystem appears to be quite resilient in the face of a severe hurricane effect.
Estuaries | 1999
John C. Lehrter; Jonathan R. Pennock; George B. McManus
The role of the microzooplankton community in regulating phytoplankton biomass was examined across a gradient from a river-dominated estuary to an oceanic-influenced coastal zone. Three stations located along a salinity gradient from the central region of Mobile Bay to 10 km off the coast were sampled from May 1994 to August 1995. Microzooplankton herbivory rates on phytoplankton and microzooplankton excretion of nitrogen derived from phytoplankton were estimated using the dilution technique. Microzooplankton grazing rates (range of station means=0.57–1.10 d−1) and phytoplankton growth rates (0.70–1.62 d−1) both increased across the salinity gradient from the bay station to the offshore station. However, the percent of primary production grazed per day was highest at the bay station (mean=83%) and decreased to a low at the offshore station (mean=64%). Excretion of phytoplankton-derived nitrogen by the microzooplankton was greatest at the bay and bay mouth stations. Excreted nitrogen could potentially supply 39%, 29%, and 20% of phytoplankton nitrogen demand at the bay, bay mouth, and offshore stations, respectively. These results support the idea that herbivorous microzooplankton are important in mediating nitrogen flow to both lower and higher trophic levels. *** DIRECT SUPPORT *** A01BY085 00012
Environmental Science & Technology | 2012
Blake A. Schaeffer; James D. Hagy; Robyn N. Conmy; John C. Lehrter; Richard P. Stumpf
Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida’s waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida’s coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (ChlRS-a, mg m–3) were resolved across Florida’s coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of ChlRS-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters.
Ecological Applications | 2010
John C. Lehrter; Just Cebrian
New aspects and advancements in classical uncertainty propagation methods were used to develop a nutrient budget with associated uncertainty for a northern Gulf of Mexico coastal embayment. Uncertainty was calculated for budget terms by propagating the standard error and degrees of freedom. New aspects include the combined use of Monte Carlo simulations with classical error propagation methods, uncertainty analyses for GIS computations, and uncertainty propagation involving literature and subjective estimates of terms used in the budget calculations. The methods employed are broadly applicable to the mathematical operations employed in ecological studies involving step-by-step calculations, scaling procedures, and calculations of variables from direct measurements and/or literature estimates. Propagation of the standard error and the degrees of freedom allowed for calculation of the uncertainty intervals around every term in the budget. For scientists and environmental managers, the methods developed herein provide a relatively simple framework to propagate and assess the contributions of uncertainty in directly measured and literature estimated variables to calculated variables. Application of these methods to environmental data used in scientific reporting and environmental management will improve the interpretation of data and simplify the estimation of risk associated with decisions based on ecological studies.
Marine Pollution Bulletin | 2008
John C. Lehrter
The factors regulating the eutrophication susceptibility of seven oligohaline regions in the sub-estuaries of Mobile Bay, Alabama were examined in a comparative analysis. The oligohaline regions differed primarily by the dominant land-use of their upstream watersheds, with two of the regions being primarily urban, two being primarily agricultural, and three being primarily forested. A stepwise model selection procedure was used to determine a suite of multiple regression models describing eutrophication response, in terms of a chlorophyll a (chla) on a sampling event basis, in relation to estuarine mixing time scales, nutrient concentrations, light availability, and watershed delivery of freshwater and nutrients. The models indicated a strong positive relationship between chla and mixing time scales (i.e., residence time or freshwater flushing time). Mixing time scales longer than five days allowed maximum chla (64 microg l(-1)), while lowest chla (< 1 microg l(-1)) occurred when mixing time scales were less than two days. Of the watershed inputs, chla exhibited opposing relationships with the components of freshwater load, having a negative relationship with discharge and a positive relationship with incoming freshwater nitrogen concentrations. Estuarine phosphorus concentrations and photosynthetically active radiation were also found to be good descriptors of chla. The comparative approach employed here allowed for the development of empirical models that were used to determine the nutrient concentration reductions required to achieve a trophic state of < 20 microg l(-1) chla. The average reductions in nitrogen and phosphorus needed to achieve this trophic state ranged from 0 to 32%.
Journal of Geophysical Research | 2016
Katja Fennel; Arnaud Laurent; Robert D. Hetland; Dubravko Justic; Dong S. Ko; John C. Lehrter; Michael C. Murrell; Lixia Wang; Liuqian Yu; Wenxia Zhang
A large hypoxic zone forms every summer on the Texas-Louisiana Shelf in the northern Gulf of Mexico due to nutrient and freshwater inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through reductions in river nutrient inputs, but the response of hypoxia to such nutrient load reductions is difficult to predict because biological responses are confounded by variability in physical processes. The objective of this study is to identify the major physical model aspects that matter for hypoxia simulation and prediction. In order to do so, we compare three different circulation models (ROMS, FVCOM, and NCOM) implemented for the northern Gulf of Mexico, all coupled to the same simple oxygen model, with observations and against each other. By using a highly simplified oxygen model, we eliminate the potentially confounding effects of a full biogeochemical model and can isolate the effects of physical features. In a systematic assessment, we found that (1) model-to-model differences in bottom water temperatures result in differences in simulated hypoxia because temperature influences the uptake rate of oxygen by the sediments (an important oxygen sink in this system), (2) vertical stratification does not explain model-to-model differences in hypoxic conditions in a straightforward way, and (3) the thickness of the bottom boundary layer, which sets the thickness of the hypoxic layer in all three models, is key to determining the likelihood of a model to generate hypoxic conditions. These results imply that hypoxic area, the commonly used metric in the northern Gulf which ignores hypoxic layer thickness, is insufficient for assessing a models ability to accurately simulate hypoxia, and that hypoxic volume needs to be considered as well.
Journal of Geophysical Research | 2014
Chengfeng Le; John C. Lehrter; Chuanmin Hu; Michael C. Murrell; Lin Qi
A monthly time series of remotely sensed chlorophyll-a (Chlars) over the Louisiana continental shelf (LCS) was developed and examined for its relationship to river discharge, nitrate concentration, total phosphorus concentration, photosynthetically available radiation (PAR), wind speed, and interannual variation in hypoxic area size. A new algorithm for Chlars, tuned separately for clear and turbid waters, was developed using field-observed chlorophyll-a (Chlaobs) collected during 12 cruises from 2002 to 2007. The new algorithm reproduced Chlaobs, with ∼40% and ∼60% uncertainties at satellite pixel level for clear offshore waters and turbid nearshore waters, respectively. The algorithm was then applied to SeaWiFS and MODIS images to calculate long-term (1998–2013) monthly mean Chlars estimates at 1 km resolution across the LCS. Correlation and multiple stepwise regression analyses were used to relate the Chlars estimates to key environmental drivers expected to influence phytoplankton variability. The Chlars time series covaried with river discharge and nutrient concentration, PAR, and wind speed, and there were spatial differences in how these environmental drivers influenced Chlars. The main axis of spatial variability occurred in a cross-shelf direction with highest Chlars observed on the inner shelf. Both inner (<10 m depth) and middle-shelf (10–50 m depth) Chlars were observed to covary with interannual variations in the size of the hypoxic (O2 < 63 mmol m−3) area, and they explained ∼70 and ∼50% variability in interannual hypoxia size, respectively.
Environmental Science & Technology | 2016
Timothy J. Feist; James J. Pauer; Wilson Melendez; John C. Lehrter; Phillip A. DePetro; Kenneth R. Rygwelski; Dong S. Ko; Russell G. Kreis
The Louisiana continental shelf in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In this study, we applied a biogeochemical model that simulates dissolved oxygen concentrations on the shelf in response to varying riverine nutrient and organic carbon loads, boundary fluxes, and sediment fluxes. Five-year model simulations demonstrated that midsummer hypoxic areas were most sensitive to riverine nutrient loads and sediment oxygen demand from settled organic carbon. Hypoxic area predictions were also sensitive to nutrient and organic carbon fluxes from lateral boundaries. The predicted hypoxic area decreased with decreases in nutrient loads, but the extent of change was influenced by the method used to estimate model boundary concentrations. We demonstrated that modeling efforts to predict changes in hypoxic area on the continental shelf in relationship to changes in nutrients should include representative boundary nutrient and organic carbon concentrations and functions for estimating sediment oxygen demand that are linked to settled organic carbon derived from water-column primary production. On the basis of our model analyses using the most representative boundary concentrations, nutrient loads would need to be reduced by 69% to achieve the Gulf of Mexico Nutrient Task Force Action Plan target hypoxic area of 5000 km(2).
Remote Sensing | 2016
Dong S. Ko; Richard W. Gould; Bradley Penta; John C. Lehrter
We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the annual hypoxic zone. Rainfall data from the Tropical Rainfall Measurement Mission (TRMM) were used for the salinity flux, and the diffuse attenuation coefficient (Kd) from Moderate Resolution Imaging Spectroradiometer (MODIS) were used for solar penetration. Improvements in the model results in comparison with in situ observations occurred when the two types of satellite data were included. Without inclusion of the satellite-derived surface salinity flux, realistic monthly variability in the model salinity fields was observed, but important inter-annual variability was missed. Without inclusion of the satellite-derived light attenuation, model bottom water temperatures were too high nearshore due to excessive penetration of solar irradiance. In general, these salinity and temperature errors led to model stratification that was too weak, and the model failed to capture observed spatial and temporal variability in water-column vertical stratification. Inclusion of the satellite data improved temperature and salinity predictions and the vertical stratification was strengthened, which improved prediction of bottom-water dissolved oxygen. The model-predicted area of bottom-water hypoxia on the Louisiana shelf, an important management metric, was substantially improved in comparison to observed hypoxic area by including the satellite data.
Marine Pollution Bulletin | 2017
Robyn N. Conmy; Blake A. Schaeffer; Joseph P. Schubauer-Berigan; Jessica Aukamp; Allyn Duffy; John C. Lehrter; Richard M. Greene
Water Quality (WQ) condition is based on ecosystem stressor indicators (e.g. water clarity) which are biogeochemically important and critical when considering the Deepwater Horizon oil spill restoration efforts under the 2012 RESTORE Act. Nearly all of the proposed RESTORE projects list restoring WC as a goal, but 90% neglect water clarity. Here, dynamics of optical constituents impacting clarity are presented from a 2009-2011 study within Pensacola, Choctawhatchee, St. Andrew and St. Joseph estuaries (targeted RESTORE sites) in Northwest Florida. Phytoplankton were the smallest contribution to total absorption (at-wPAR) at 412nm (5-11%), whereas colored dissolved organic matter was the largest (61-79%). Estuarine at-wPAR was significantly related to light attenuation (KdPAR), where individual contributors to clarity and the influence of climatic events were discerned. Provided are conversion equations demonstrating interoperability of clarity indicators between traditional State-measured WQ measures (e.g. secchi disc), optical constituents, and even satellite remote sensing for obtaining baseline assessments.