Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Matese is active.

Publication


Featured researches published by John C. Matese.


Nature Genetics | 2000

Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.

Michael Ashburner; Catherine A. Ball; Judith A. Blake; David Botstein; Heather L. Butler; J. Michael Cherry; Allan Peter Davis; Kara Dolinski; Selina S. Dwight; Janan T. Eppig; Midori A. Harris; David P. Hill; Laurie Issel-Tarver; Andrew Kasarskis; Suzanna E. Lewis; John C. Matese; Joel E. Richardson; Martin Ringwald; Gerald M. Rubin; Gavin Sherlock

Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications

Therese Sørlie; Charles M. Perou; Robert Tibshirani; Turid Aas; Stephanie Geisler; Hilde Johnsen; Trevor Hastie; Michael B. Eisen; Matt van de Rijn; Stefanie S. Jeffrey; T. Thorsen; Hanne Quist; John C. Matese; Patrick O. Brown; David Botstein; Per Eystein Lønning; Anne Lise Børresen-Dale

The purpose of this study was to classify breast carcinomas based on variations in gene expression patterns derived from cDNA microarrays and to correlate tumor characteristics to clinical outcome. A total of 85 cDNA microarray experiments representing 78 cancers, three fibroadenomas, and four normal breast tissues were analyzed by hierarchical clustering. As reported previously, the cancers could be classified into a basal epithelial-like group, an ERBB2-overexpressing group and a normal breast-like group based on variations in gene expression. A novel finding was that the previously characterized luminal epithelial/estrogen receptor-positive group could be divided into at least two subgroups, each with a distinctive expression profile. These subtypes proved to be reasonably robust by clustering using two different gene sets: first, a set of 456 cDNA clones previously selected to reflect intrinsic properties of the tumors and, second, a gene set that highly correlated with patient outcome. Survival analyses on a subcohort of patients with locally advanced breast cancer uniformly treated in a prospective study showed significantly different outcomes for the patients belonging to the various groups, including a poor prognosis for the basal-like subtype and a significant difference in outcome for the two estrogen receptor-positive groups.


Nature Genetics | 2001

Minimum information about a microarray experiment (MIAME)-toward standards for microarray data.

Alvis Brazma; Pascal Hingamp; John Quackenbush; Gavin Sherlock; Paul T. Spellman; Stoeckert C; John Aach; Wilhelm Ansorge; Catherine A. Ball; Helen C. Causton; Terry Gaasterland; Patrick Glenisson; Irene F. Kim; John C. Matese; Helen Parkinson; Alan Robinson; Ugis Sarkans; Jason Stewart; Ronald C. Taylor; Jaak Vilo; Martin Vingron

Microarray analysis has become a widely used tool for the generation of gene expression data on a genomic scale. Although many significant results have been derived from microarray studies, one limitation has been the lack of standards for presenting and exchanging such data. Here we present a proposal, the Minimum Information About a Microarray Experiment (MIAME), that describes the minimum information required to ensure that microarray data can be easily interpreted and that results derived from its analysis can be independently verified. The ultimate goal of this work is to establish a standard for recording and reporting microarray-based gene expression data, which will in turn facilitate the establishment of databases and public repositories and enable the development of data analysis tools. With respect to MIAME, we concentrate on defining the content and structure of the necessary information rather than the technical format for capturing it.


Nucleic Acids Research | 2001

The Stanford Microarray Database

Gavin Sherlock; Tina Hernandez-Boussard; Andrew Kasarskis; Gail Binkley; John C. Matese; Selina S. Dwight; Shuai Weng; Heng Jin; Catherine A. Ball; Michael B. Eisen; Paul T. Spellman; Patrick O. Brown; David Botstein; J. Michael Cherry

The Stanford Microarray Database (SMD) stores raw and normalized data from microarray experiments, and provides web interfaces for researchers to retrieve, analyze and visualize their data. The two immediate goals for SMD are to serve as a storage site for microarray data from ongoing research at Stanford University, and to facilitate the public dissemination of that data once published, or released by the researcher. Of paramount importance is the connection of microarray data with the biological data that pertains to the DNA deposited on the microarray (genes, clones etc.). SMD makes use of many public resources to connect expression information to the relevant biology, including SGD [Ball,C.A., Dolinski,K., Dwight,S.S., Harris,M.A., Issel-Tarver,L., Kasarskis,A., Scafe,C.R., Sherlock,G., Binkley,G., Jin,H. et al. (2000) Nucleic Acids Res., 28, 77-80], YPD and WormPD [Costanzo,M.C., Hogan,J.D., Cusick,M.E., Davis,B.P., Fancher,A.M., Hodges,P.E., Kondu,P., Lengieza,C., Lew-Smith,J.E., Lingner,C. et al. (2000) Nucleic Acids Res., 28, 73-76], Unigene [Wheeler,D.L., Chappey,C., Lash,A.E., Leipe,D.D., Madden,T.L., Schuler,G.D., Tatusova,T.A. and Rapp,B.A. (2000) Nucleic Acids Res., 28, 10-14], dbEST [Boguski,M.S., Lowe,T.M. and Tolstoshev,C.M. (1993) Nature Genet., 4, 332-333] and SWISS-PROT [Bairoch,A. and Apweiler,R. (2000) Nucleic Acids Res., 28, 45-48] and can be accessed at http://genome-www.stanford.edu/microarray.


Nucleic Acids Research | 2003

SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data

Maximilian Diehn; Gavin Sherlock; Gail Binkley; Heng Jin; John C. Matese; Tina Hernandez-Boussard; Christian A. Rees; J. Michael Cherry; David Botstein; Patrick O. Brown; Ash A. Alizadeh

The explosion in the number of functional genomic datasets generated with tools such as DNA microarrays has created a critical need for resources that facilitate the interpretation of large-scale biological data. SOURCE is a web-based database that brings together information from a broad range of resources, and provides it in manner particularly useful for genome-scale analyses. SOURCEs GeneReports include aliases, chromosomal location, functional descriptions, GeneOntology annotations, gene expression data, and links to external databases. We curate published microarray gene expression datasets and allow users to rapidly identify sets of co-regulated genes across a variety of tissues and a large number of conditions using a simple and intuitive interface. SOURCE provides content both in gene and cDNA clone-centric pages, and thus simplifies analysis of datasets generated using cDNA microarrays. SOURCE is continuously updated and contains the most recent and accurate information available for human, mouse, and rat genes. By allowing dynamic linking to individual gene or clone reports, SOURCE facilitates browsing of large genomic datasets. Finally, SOURCEs batch interface allows rapid extraction of data for thousands of genes or clones at once and thus facilitates statistical analyses such as assessing the enrichment of functional attributes within clusters of genes. SOURCE is available at http://source.stanford.edu.


Nucleic Acids Research | 2003

The Stanford Microarray Database: data access and quality assessment tools

Jeremy Gollub; Catherine A. Ball; Gail Binkley; Janos Demeter; David B. Finkelstein; Joan M. Hebert; Tina Hernandez-Boussard; Heng Jin; John C. Matese; Mark Schroeder; Patrick O. Brown; David Botstein; Gavin Sherlock

The Stanford Microarray Database (SMD; http://genome-www.stanford.edu/microarray/) serves as a microarray research database for Stanford investigators and their collaborators. In addition, SMD functions as a resource for the entire scientific community, by making freely available all of its source code and providing full public access to data published by SMD users, along with many tools to explore and analyze those data. SMD currently provides public access to data from 3500 microarrays, including data from 85 publications, and this total is increasing rapidly. In this article, we describe some of SMDs newer tools for accessing public data, assessing data quality and for data analysis.


Nucleic Acids Research | 2004

The Stanford Microarray Database accommodates additional microarray platforms and data formats

Catherine A. Ball; Ihab A. B. Awad; Janos Demeter; Jeremy Gollub; Joan M. Hebert; Tina Hernandez-Boussard; Heng Jin; John C. Matese; Michael Nitzberg; Farrell Wymore; Zachariah K. Zachariah; Patrick O. Brown; Gavin Sherlock

The Stanford Microarray Database (SMD) (http://smd.stanford.edu) is a research tool for hundreds of Stanford researchers and their collaborators. In addition, SMD functions as a resource for the entire biological research community by providing unrestricted access to microarray data published by SMD users and by disseminating its source code. In addition to storing GenePix (Axon Instruments) and ScanAlyze output from spotted microarrays, SMD has recently added the ability to store, retrieve, display and analyze the complete raw data produced by several additional microarray platforms and image analysis software packages, so that we can also now accept data from Affymetrix GeneChips (MAS5/GCOS or dChip), Agilent Catalog or Custom arrays (using Agilents Feature Extraction software) or data created by SpotReader (Niles Scientific). We have implemented software that allows us to accept MAGE-ML documents from array manufacturers and to submit MIAME-compliant data in MAGE-ML format directly to ArrayExpress and GEO, greatly increasing the ease with which data from SMD can be published adhering to accepted standards and also increasing the accessibility of published microarray data to the general public. We have introduced a new tool to facilitate data sharing among our users, so that datasets can be shared during, before or after the completion of data analysis. The latest version of the source code for the complete database package was released in November 2004 (http://smd.stanford.edu/download/), allowing researchers around the world to deploy their own installations of SMD.


Genome Biology | 2002

Transcriptional programs activated by exposure of human prostate cancer cells to androgen

Samuel E. DePrimo; Maximilian Diehn; Joel B. Nelson; Robert E. Reiter; John C. Matese; Mike Fero; Robert Tibshirani; Patrick O. Brown; James D. Brooks

BackgroundAndrogens are required for both normal prostate development and prostate carcinogenesis. We used DNA microarrays, representing approximately 18,000 genes, to examine the temporal program of gene expression following treatment of the human prostate cancer cell line LNCaP with a synthetic androgen.ResultsWe observed statistically significant changes in levels of transcripts of more than 500 genes. Many of these genes were previously reported androgen targets, but most were not previously known to be regulated by androgens. The androgen-induced expression programs in three additional androgen-responsive human prostate cancer cell lines, and in four androgen-independent subclones derived from LNCaP, shared many features with those observed in LNCaP, but some differences were observed. A remarkable fraction of the genes induced by androgen appeared to be related to production of seminal fluid and these genes included many with roles in protein folding, trafficking, and secretion.ConclusionsProstate cancer cell lines retain features of androgen responsiveness that reflect normal prostatic physiology. These results provide a broad view of the effect of androgen signaling on the transcriptional program in these cancer cells, and a foundation for further studies of androgen action.


Nucleic Acids Research | 2007

The Stanford Microarray Database: implementation of new analysis tools and open source release of software

Janos Demeter; Catherine C Beauheim; Jeremy Gollub; Tina Hernandez-Boussard; Heng Jin; Donald Maier; John C. Matese; Michael Nitzberg; Farrell Wymore; Zachariah K. Zachariah; Patrick O. Brown; Gavin Sherlock; Catherine A. Ball

The Stanford Microarray Database (SMD; ) is a research tool and archive that allows hundreds of researchers worldwide to store, annotate, analyze and share data generated by microarray technology. SMD supports most major microarray platforms, and is MIAME-supportive and can export or import MAGE-ML. The primary mission of SMD is to be a research tool that supports researchers from the point of data generation to data publication and dissemination, but it also provides unrestricted access to analysis tools and public data from 300 publications. In addition to supporting ongoing research, SMD makes its source code fully and freely available to others under an Open Source license, enabling other groups to create a local installation of SMD. In this article, we describe several data analysis tools implemented in SMD and we discuss features of our software release.


PLOS Biology | 2013

The Oxytricha trifallax Macronuclear Genome: A Complex Eukaryotic Genome with 16,000 Tiny Chromosomes

Estienne C. Swart; John R. Bracht; Vincent Magrini; Patrick Minx; Xiao Chen; Yi Zhou; Jaspreet S. Khurana; Aaron David Goldman; Mariusz Nowacki; Klaas Schotanus; Seolkyoung Jung; Robert S. Fulton; Amy Ly; Sean McGrath; Kevin Haub; Jessica L. Wiggins; Donna Storton; John C. Matese; Lance Parsons; Wei-Jen Chang; Michael S. Bowen; Nicholas A. Stover; Thomas A. Jones; Sean R. Eddy; Glenn Herrick; Thomas G. Doak; Richard Wilson; Elaine R. Mardis; Laura F. Landweber

With more chromosomes than any other sequenced genome, the macronuclear genome of Oxytricha trifallax has a unique and complex architecture, including alternative fragmentation and predominantly single-gene chromosomes.

Collaboration


Dive into the John C. Matese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge