Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sumanta Goswami is active.

Publication


Featured researches published by Sumanta Goswami.


Cancer Research | 2007

Direct visualization of macrophage assisted tumor cell intravasation in mammary tumors

Jeffrey Wyckoff; Yarong Wang; Elaine Y. Lin; Jiu Feng Li; Sumanta Goswami; E. Richard Stanley; Jeffrey E. Segall; Jeffrey W. Pollard; John Condeelis

Although the presence of macrophages in tumors has been correlated with poor prognosis, until now there was no direct observation of how macrophages are involved in hematogenous metastasis. In this study, we use multiphoton microscopy to show, for the first time, that tumor cell intravasation occurs in association with perivascular macrophages in mammary tumors. Furthermore, we show that perivascular macrophages of the mammary tumor are associated with tumor cell intravasation in the absence of local angiogenesis. These results show that the interaction between macrophages and tumor cells lying in close proximity defines a microenvironment that is directly involved in the intravasation of cancer cells in mammary tumors.


Cancer Research | 2005

Macrophages Promote the Invasion of Breast Carcinoma Cells via a Colony-Stimulating Factor-1/Epidermal Growth Factor Paracrine Loop

Sumanta Goswami; Erik Sahai; Jeffrey Wyckoff; Michael Cammer; Dianne Cox; Fiona J. Pixley; E. Richard Stanley; Jeffrey E. Segall; John Condeelis

Previous studies have shown that macrophages and tumor cells are comigratory in mammary tumors and that these cell types are mutually dependent for invasion. Here we show that macrophages and tumor cells are necessary and sufficient for comigration and invasion into collagen I and that this process involves a paracrine loop. Macrophages express epidermal growth factor (EGF), which promotes the formation of elongated protrusions and cell invasion by carcinoma cells. Colony stimulating factor 1 (CSF-1) produced by carcinoma cells promotes the expression of EGF by macrophages. In addition, EGF promotes the expression of CSF-1 by carcinoma cells thereby generating a positive feedback loop. Disruption of this loop by blockade of either EGF receptor or CSF-1 receptor signaling is sufficient to inhibit both macrophage and tumor cell migration and invasion.


Cancer Research | 2004

Identification and Testing of a Gene Expression Signature of Invasive Carcinoma Cells within Primary Mammary Tumors

Weigang Wang; Sumanta Goswami; Kyle Lapidus; Amber L. Wells; Jeffrey Wyckoff; Erik Sahai; Robert H. Singer; Jeffrey E. Segall; John Condeelis

We subjected cells collected using an in vivo invasion assay to cDNA microarray analysis to identify the gene expression profile of invasive carcinoma cells in primary mammary tumors. Expression of genes involved in cell division, survival, and cell motility were most dramatically changed in invasive cells indicating a population that is neither dividing nor apoptotic but intensely motile. In particular, the genes coding for the minimum motility machine that regulates β-actin polymerization at the leading edge and, therefore, the motility and chemotaxis of carcinoma cells, were dramatically up-regulated. However, ZBP1, which restricts the localization of β-actin, the substrate for the minimum motility machine, was down-regulated. This pattern of expression implicated ZBP1 as a suppressor of invasion. Reexpression of ZBP1 in metastatic cells with otherwise low levels of ZBP1 reestablished normal patterns of β-actin mRNA targeting and suppressed chemotaxis and invasion in primary tumors. ZBP1 reexpression also inhibited metastasis from tumors. These experiments support the involvement in metastasis of the pathways identified in invasive cells, which are regulated by ZBP1.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models

Huiping Liu; Manishkumar Patel; Jennifer A. Prescher; Antonia Patsialou; Dalong Qian; Jiahui Lin; Susanna Wen; Ya Fang Chang; Michael H. Bachmann; Yohei Shimono; Piero Dalerba; Maddalena Adorno; Neethan Lobo; Janet Bueno; Frederick M. Dirbas; Sumanta Goswami; George Somlo; John Condeelis; Christopher H. Contag; Sanjiv S. Gambhir; Michael F. Clarke

To examine the role of breast cancer stem cells (BCSCs) in metastasis, we generated human-in-mouse breast cancer orthotopic models using patient tumor specimens, labeled with optical reporter fusion genes. These models recapitulate human cancer features not captured with previous models, including spontaneous metastasis in particular, and provide a useful platform for studies of breast tumor initiation and progression. With noninvasive imaging approaches, as few as 10 cells of stably labeled BCSCs could be tracked in vivo, enabling studies of early tumor growth and spontaneous metastasis. These advances in BCSC imaging revealed that CD44+ cells from both primary tumors and lung metastases are highly enriched for tumor-initiating cells. Our metastatic cancer models, combined with noninvasive imaging techniques, constitute an integrated approach that could be applied to dissect the molecular mechanisms underlying the dissemination of metastatic CSCs (MCSCs) and to explore therapeutic strategies targeting MCSCs in general or to evaluate individual patient tumor cells and predict response to therapy.


Science Translational Medicine | 2013

Impairment of BRCA1-Related DNA Double-Strand Break Repair Leads to Ovarian Aging in Mice and Humans

Shiny Titus; Fang Li; Robert Stobezki; Komala Akula; Evrim Unsal; Kyungah Jeong; Maura N. Dickler; Mark Robson; Fred Moy; Sumanta Goswami; Kutluk Oktay

DNA double-strand break repair has a central role in oocyte aging. Preserving Fertility Breeds Flexibility Last month, the U.K. Office for National Statistics reported that, in 2010, ~48% of infants were born to mothers 30 years and older, a level not seen since 1946—just after the end of World War II. Delaying childbearing can allow women flexibility with respect to career options. But unlike many somatic tissues, the female germline ages early, with reproductive capacity beginning to diminish after young adulthood. Attempts to stem oocyte aging and preserve fertility will depend on finely characterizing the molecular mechanisms behind the aging process in the female reproductive system. Now, Titus et al. provide evidence for a new mechanism to explain age-related oocyte dysfunction. The authors showed that double-stranded breaks (DSBs) in DNA—which are essential for normal development—accumulate with age and contribute to reproductive aging in mice and women. In single mouse and human oocytes, the expression of DSB repair genes BRCA1, MRE11, RAD51, and ATM declined with age. Thus DSBs likely collect in the oocyte genome because of age-related missteps in DSB repair, which stimulate apoptosis and diminishes ovarian reserve. Indeed, in Brca1-deficient mice, numbers of primordial follicles—immature primary oocytes—were decreased, DSBs were increased, and reproductive capacity was impaired relative to wild-type mice. Using RNA interference in mouse oocytes, the authors showed that inhibition of Brca1, MRE11, RAD51, and, in turn, ATM expression increased DSBs and reduced oocyte survival. The authors then measured serum concentrations of anti-Müllerian hormone—a measure of fertility—in young women with germline BRCA1 mutations versus controls and showed that ovarian reserve was compromised in the latter group. Together, these findings show that the efficiency of DNA DSB repair is a crucial determinant of oocyte loss. The discovery of therapies that target this pathway might help to enhance the duration of ovarian function. The underlying mechanism behind age-induced wastage of the human ovarian follicle reserve is unknown. We identify impaired ATM (ataxia-telangiectasia mutated)–mediated DNA double-strand break (DSB) repair as a cause of aging in mouse and human oocytes. We show that DSBs accumulate in primordial follicles with age. In parallel, expression of key DNA DSB repair genes BRCA1, MRE11, Rad51, and ATM, but not BRCA2, declines in single mouse and human oocytes. In Brca1-deficient mice, reproductive capacity was impaired, primordial follicle counts were lower, and DSBs were increased in remaining follicles with age relative to wild-type mice. Furthermore, oocyte-specific knockdown of Brca1, MRE11, Rad51, and ATM expression increased DSBs and reduced survival, whereas Brca1 overexpression enhanced both parameters. Likewise, ovarian reserve was impaired in young women with germline BRCA1 mutations compared to controls as determined by serum concentrations of anti-Müllerian hormone. These data implicate DNA DSB repair efficiency as an important determinant of oocyte aging in women.


Cancer Research | 2009

Invasion of Human Breast Cancer Cells In vivo Requires Both Paracrine and Autocrine Loops Involving the Colony-Stimulating Factor-1 Receptor

Antonia Patsialou; Jeffrey Wyckoff; Yarong Wang; Sumanta Goswami; E. Richard Stanley; John Condeelis

Colony-stimulating factor-1 (CSF-1) and its receptor (CSF-1R) have been implicated in the pathogenesis and progression of various types of cancer, including breast cancer. This is based on high levels of circulating CSF-1 in patient sera with aggressive disease and increased CSF-1R staining in the tumor tissues. However, there have been no direct in vivo studies to determine whether a CSF-1 autocrine signaling loop functions in human breast cancer cells in vivo and whether it contributes to invasion. Recently, in mouse and rat models, it has been shown that invasion and metastasis are driven by an epidermal growth factor (EGF)/CSF-1 paracrine loop between tumor cells and host macrophages. In this macrophage-dependent invasion, tumor cells secrete CSF-1 and sense EGF, whereas the macrophages secrete EGF and sense CSF-1. Here, we test the hypothesis that in human breast tumors, the expression of both the CSF-1 ligand and its receptor in tumor cells leads to a CSF-1/CSF-1R autocrine loop which contributes to the aggressive phenotype of human breast tumors. Using MDA-MB-231 cell-derived mammary tumors in severe combined immunodeficiency mice, we show here for the first time in vivo that invasion in a human mammary tumor model is dependent on both paracrine signaling with host macrophages as well as autocrine signaling involving the tumor cells themselves. In particular, we show that the autocrine contribution to invasion is specifically amplified in vivo through a tumor microenvironment-induced upregulation of CSF-1R expression via the transforming growth factor-beta1.


Cancer Research | 2007

Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors

Weigang Wang; Jeffrey Wyckoff; Sumanta Goswami; Yarong Wang; Mazen Sidani; Jeffrey E. Segall; John Condeelis

Correlating tumor cell behavior in vivo with patterns of gene expression has led to new insights into the microenvironment of tumor cells in the primary tumor. Until now, these studies have been done with cell line-derived tumors. In the current study, we have analyzed, in polyoma middle T oncogene (PyMT)-derived mammary tumors, tumor cell behavior and gene expression patterns of the invasive subpopulation of tumor cells by multiphoton-based intravital imaging and microarray-based expression profiling, respectively. Our results indicate that the patterns of cell behavior that contribute to invasion and metastasis in the PyMT tumor are similar to those seen previously in rat MTLn3 cell line-derived mammary tumors. The invasive tumor cells collected from PyMT mouse mammary tumors, like their counterparts from rat xenograft mammary tumors, are a population that is relatively nondividing and nonapoptotic but chemotherapy resistant and chemotactic. Changes in the expression of genes that occur uniquely in the invasive subpopulation of tumor cells in the PyMT mammary tumors that fall on the Arp2/3 complex, capping protein and cofilin pathways show a pattern like that seen previously in invasive tumor cells from the MTLn3 cell line-derived tumors. These changes predict an enhanced activity of the cofilin pathway, and this was confirmed in isolated invasive PyMT tumor cells. We conclude that changes in gene expression and their related changes in cell behavior, which were identified in the invasive tumor cells of cell line-derived tumors, are conserved in the invasive tumor cells of PyMT-derived mouse mammary tumors, although these tumor types have different genetic origins.


Molecular Biology of the Cell | 2010

The Late Endosome is Essential for mTORC1 Signaling

Rory J. Flinn; Ying Yan; Sumanta Goswami; Peter J. Parker; Jonathan M. Backer

Recent work suggests a link between endocytic trafficking and mTORC1 signaling. This paper demonstrates a specific requirement for the integrity of the late endosomal compartment for amino acid and insulin-stimulated mTORC1 signaling to downstream effectors.


Journal of Cell Science | 2011

Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer

Evanthia T. Roussos; Michele Balsamo; Shannon K. Alford; Jeffrey Wyckoff; Bojana Gligorijevic; Yarong Wang; Maria Pozzuto; Robert Stobezki; Sumanta Goswami; Jeffrey E. Segall; Douglas A. Lauffenburger; Anne R. Bresnick; Frank B. Gertler; John Condeelis

We have shown previously that distinct Mena isoforms are expressed in invasive and migratory tumor cells in vivo and that the invasion isoform (MenaINV) potentiates carcinoma cell metastasis in murine models of breast cancer. However, the specific step of metastatic progression affected by this isoform and the effects on metastasis of the Mena11a isoform, expressed in primary tumor cells, are largely unknown. Here, we provide evidence that elevated MenaINV increases coordinated streaming motility, and enhances transendothelial migration and intravasation of tumor cells. We demonstrate that promotion of these early stages of metastasis by MenaINV is dependent on a macrophage–tumor cell paracrine loop. Our studies also show that increased Mena11a expression correlates with decreased expression of colony-stimulating factor 1 and a dramatically decreased ability to participate in paracrine-mediated invasion and intravasation. Our results illustrate the importance of paracrine-mediated cell streaming and intravasation on tumor cell dissemination, and demonstrate that the relative abundance of MenaINV and Mena11a helps to regulate these key stages of metastatic progression in breast cancer cells.


Breast Cancer Research | 2012

Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients

Antonia Patsialou; Yarong Wang; Juan Lin; Kathleen Whitney; Sumanta Goswami; Paraic A. Kenny; John Condeelis

IntroductionMetastasis of breast cancer is the main cause of death in patients. Previous genome-wide studies have identified gene-expression patterns correlated with cancer patient outcome. However, these were derived mostly from whole tissue without respect to cell heterogeneity. In reality, only a small subpopulation of invasive cells inside the primary tumor is responsible for escaping and initiating dissemination and metastasis. When whole tissue is used for molecular profiling, the expression pattern of these cells is masked by the majority of the noninvasive tumor cells. Therefore, little information is available about the crucial early steps of the metastatic cascade: migration, invasion, and entry of tumor cells into the systemic circulation.MethodsIn the past, we developed an in vivo invasion assay that can capture specifically the highly motile tumor cells in the act of migrating inside living tumors. Here, we used this assay in orthotopic xenografts of human MDA-MB-231 breast cancer cells to isolate selectively the migratory cell subpopulation of the primary tumor for gene-expression profiling. In this way, we derived a gene signature specific to breast cancer migration and invasion, which we call the Human Invasion Signature (HIS).ResultsUnsupervised analysis of the HIS shows that the most significant upregulated gene networks in the migratory breast tumor cells include genes regulating embryonic and tissue development, cellular movement, and DNA replication and repair. We confirmed that genes involved in these functions are upregulated in the migratory tumor cells with independent biological repeats. We also demonstrate that specific genes are functionally required for in vivo invasion and hematogenous dissemination in MDA-MB-231, as well as in patient-derived breast tumors. Finally, we used statistical analysis to show that the signature can significantly predict risk of breast cancer metastasis in large patient cohorts, independent of well-established prognostic parameters.ConclusionsOur data provide novel insights into, and reveal previously unknown mediators of, the metastatic steps of invasion and dissemination in human breast tumors in vivo. Because migration and invasion are the early steps of metastatic progression, the novel markers that we identified here might become valuable prognostic tools or therapeutic targets in breast cancer.

Collaboration


Dive into the Sumanta Goswami's collaboration.

Top Co-Authors

Avatar

John Condeelis

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Wyckoff

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Maja H. Oktay

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yarong Wang

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Joan G. Jones

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey E. Segall

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Frank B. Gertler

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther Adler

Montefiore Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge