Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John D. Bredehoeft is active.

Publication


Featured researches published by John D. Bredehoeft.


Advances in Water Resources | 1992

Ground-water models cannot be validated

Leonard F. Konikow; John D. Bredehoeft

Abstract Ground-water models are embodiments of scientific hypotheses. As such, the models cannot be proven or validated, but only tested and invalidated. However, model testing and the evaluation of predictive errors lead to improved models and a better understanding of the problem at hand. In applying ground-water models to field problems, errors arise from conceptual deficiencies, numerical errors, and inadequate parameter estimation. Case histories of model applications to the Dakota Aquifer, South Dakota, to bedded salts in New Mexico, and to the upper Coachella Valley, California, illustrate that calibration produces a nonunique solution and that validation, per se, is a futile objective. Although models are definitely valuable tools for analyzing ground-water systems, their predictive accuracy is limited. The terms validation and verification are misleading and their use in ground-water science should be abandoned in favor of more meaningful model-assessment descriptors.


AAPG Bulletin | 1994

Simulations of the Origin of Fluid Pressure, Fracture Generation, and the Movement of Fluids in the Uinta Basin, Utah

John D. Bredehoeft; J. B. Wesley; T. D. Fouch

The Altamont oil field in the deep Uinta basin is known to have reservoir fluid pressures that approach lithostatic. One explanation for this high pore-fluid pressure is the generation of oil from kerogen in the Green River oil shale at depth. A three-dimensional simulation of flow in the basin was done to test this hypothesis. In the flow simulation, oil generation is included as a fluid source. The kinetics of oil generation from oil shale is a function of temperature. The temperature is controlled by (1) the depth of sediment burial and (2) the geothermal gradient. Using this conceptual model, the pressure buildup results from the trade-off between the rate of oil generation and the flow away from the source volume. The pressure increase depends primarily on (1) the rate of the oil-generation reaction and (2) the permeability of the reservoir rocks. A sensitivity analysis was performed in which both of these parameters were systematically varied. The reservoir permeability must be lower than most of the observed data for the pressure to build up to near lithostatic. The results of the simulations indicated that once oil generation was initiated, the pore pressure built up rapidly to near lithostatic. We simulated hydrofractures in that part of the system in which the pressures approach lithostatic by increasing both the horizontal and the vertical permeability by an order of magnitude. Because the simulated hydrofractures were produced by the high pore pressure, they were restricted to the Altamont field. A new flow system was established in the vicinity of the reservoir; the maximum pore pressure was limited by the least principal stress. Fluids moved vertically up and down and laterally outward away from the source of oil generation. The analysis indicated that, assuming that one is willing to accept the low values of permeability, oil generati n can account for the observed high pressures at Altamont field.


AAPG Bulletin | 1988

Hydrodynamics of Denver Basin: Explanation of Subnormal Fluid Pressures

Kenneth R. Belitz; John D. Bredehoeft

Anomalously low fluid potential (and hence subnormal fluid pressure) is found in Mesozoic and Paleozoic rocks of the Denver basin. The potentiometric surface for the Dakota and basal Cretaceous sandstones is 2,000-3,000 ft (600-900 m) beneath the land surface in parts of the Denver basin in Colorado and Nebraska. The potentiometric surface for pre-Pennsylvanian carbonate rocks is 1,500 ft (450 m) lower than the potentiometric surface for the Dakota Sandstone in southeastern Colorado and western Kansas. The low fluid potential seems especially anomalous considering the high elevation of the outcrops along the Laramie and Front Ranges and the Black Hills. A quasi-three-dimensional numerical flow model is used to investigate the regional flow system in the Denver basin and adjacent Mid-Continent. The model simulates flow through the entire Phanerozoic sedimentary column and indicates that subnormal pressures are a consequence of hydraulic insulation of the strata within the basin from their recharge zones as compared to their discharge zones. The Dakota Sandstone and underlying hydrostratigraphic units are insulated from the overlying water table by low-permeability shales of Cretaceous age, and from their own high-elevation outcrops by a zone of low permeability coincident with the basin deep. Subnormal pressures in the area of Denver, Colorado, and southward are further enhanced by faulting along the Front Range that isolates the stra a within the basin from their outcrops. The results of this study show that (1) subnormal fluid pressures can be explained as a consequence of steady-state regional ground-water flow, (2) shale is an important factor in the regional flow system, and (3) depth is an important control on the distribution of hydraulic conductivity.


AAPG Bulletin | 1992

The hydrodynamics of the Big Horn Basin: a study of the role of faults

John D. Bredehoeft; K. Belitz; S. Sharp-Hansen

A three-dimensional mathematical model simulates virgin groundwater flow in the Big Horn basin, Wyoming. The computed results are compared to two published interpretations of the Tensleep Sandstone virgin potentiometric surface; both of these interpretations, Bredehoeft and Bennett, and Haun, were made from the same data set. The published maps are quite different. Bredehoeft and Bennett ignored the faults; Haun treated the faults as horizontal barriers to flow. The hydraulic head at depth over much of the Big Horn basin is near the land surface elevation, a condition usually defined as hydrostatic. This condition indicates a high, regional-scale, vertical conductivity for the sediments in the basin. Our hypothesis to explain the high conductivity is that the faults act as vertical conduits for fluid flow. These same faults can act as either horizontal barriers to flow or nonbarriers, depending upon whether the fault zones are more permeable or less permeable than the adjoining aquifers. A three-dimensional simulation of fluid flow in the basin indicates that either of the potentiometric interpretations, that of Bredehoeft and Bennett or that of Haun, can be reproduced. The results depend upon whether the fault zones are lateral barriers to flow. In the case where the faults are lateral barriers, the basin is broken into compartments with much of the areal head loss occurring across the fault zones.


Water Resources Research | 2001

Overpressures in the Uinta Basin, Utah: Analysis using a three‐dimensional basin evolution model

Brian McPherson; John D. Bredehoeft

High pore fluid pressures, approaching lithostatic, are observed in the deepest sections of the Uinta basin, Utah. Geologic observations and previous modeling studies suggest that the most likely cause of observed overpressures is hydrocarbon generation. We studied Uinta overpressures by developing and applying a three-dimensional, numerical model of the evolution of the basin. The model was developed from a public domain computer code, with addition of a new mesh generator that builds the basin through time, coupling the structural, thermal, and hydrodynamic evolution. Also included in the model are in situ hydrocarbon generation and multiphase migration. The modeling study affirmed oil generation as an overpressure mechanism, but also elucidated the relative roles of multiphase fluid interaction, oil density and viscosity, and sedimentary compaction. An important result is that overpressures by oil generation create conditions for rock fracturing, and associated fracture permeability may regulate or control the propensity to maintain overpressures.


Ground Water | 2011

Estimating Aquifer Properties from the Water Level Response to Earth Tides

Paula A. Cutillo; John D. Bredehoeft

Water level fluctuations induced by tidal strains can be analyzed to estimate the elastic properties, porosity, and transmissivity of the surrounding aquifer material. We review underutilized methods for estimating aquifer properties from the confined response to earth tides. The earth tide analyses are applied to an open well penetrating a confined carbonate aquifer. The resulting range of elastic and hydraulic aquifer properties are in general agreement with that determined by other investigators for the area of the well. The analyses indicate that passive monitoring data from wells completed in sufficiently stiff, low porosity formations can provide useful information on the properties of the surrounding formation.


Ground Water | 2011

Hydrologic trade-offs in conjunctive use management.

John D. Bredehoeft

An aquifer, in a stream/aquifer system, acts as a storage reservoir for groundwater. Groundwater pumping creates stream depletion that recharges the aquifer. As wells in the aquifer are moved away from the stream, the aquifer acts to filter out annual fluctuations in pumping; with distance the stream depletion tends to become equal to the total pumping averaged as an annual rate, with only a small fluctuation. This is true for both a single well and an ensemble of wells. A typical growing season in much of the western United States is 3 to 4 months. An ensemble of irrigation wells spread more or less uniformly across an aquifer several miles wide, pumping during the growing season, will deplete the stream by approximately one-third of the total amount of water pumped during the growing season. The remaining two-thirds of stream depletion occurs outside the growing season. Furthermore, it takes more than a decade of pumping for an ensemble of wells to reach a steady-state condition in which the impact on the stream is the same in succeeding years. After a decade or more of pumping, the depletion is nearly constant through the year, with only a small seasonal fluctuation: ±10%. Conversely, stream depletion following shutting down the pumping from an ensemble of wells takes more than a decade to fully recover from the prior pumping. Effectively managing a conjunctive groundwater and surface water system requires integrating the entire system into a single management institution with a long-term outlook.


Eos, Transactions American Geophysical Union | 1988

Will salt repositories be dry

John D. Bredehoeft

The National Academy of Science committee that considered geologic disposal of nuclear waste in the mid-1950s recommended salt as a repository medium, partly because of its high thermal conductivity and because it was believed to be “dry” (perhaps the appropriate thought is “impermeable”). Certainly, the fact that Paleozoic salt deposits exist in many parts of t h e world is evidence for very low rates of dissolution by moving groundwater. The fact that the dissolution rates were so small led many scientists to the conclusion that the salt beds were nearly impermeable. The major source of brine within the salt beds was thought to be fluid inclusions within salt crystals, which could migrate through differential solution toward a source of high heat. The idea that salt was uniformly “dry” was revised when exploratory drilling in the vicinity of the Waste Isolation Pilot Plant (WIPP) in New Mexico encountered brines within the Castile Formation, an evaporite deposit below the Salado Formation. The brine reservoirs were thought to be isolated pockets of brine in an otherwise “impermeable” salt section.


Journal of Hydrology | 1987

Origins of seawater intrusion in a coastal aquifer — A case study of the Pajaro Valley, California

Linda D. Bond; John D. Bredehoeft

Abstract Seawater may enter and contaminate stratified coastal aquifers through a number of different pathways. These pathways and their relative contribution are examined in the Pajaro Valley, California, a coastal area with extensive groundwater development. This study considers three pathways of possible intrusion of the primary confined aquifer: (1) onshore leakage from brackish sources, the estuary and sloughs, through the confining layer; (2) near-shore leakage from the ocean through the confining layer; and (3) offshore flow from the ocean through the submarine canyon outcrop of the aquifer. Groundwater flow and seawater intrusion are simulated using an areal, two-dimensional solute-transport computer model. This analysis indicates that leakage through confining layers is the principal mechanism of recharge to the aquifer. Although lateral flow through the offshore outcrop contaminates the aquifer, as a whole , at a higher rate, vertical leakage through the sea floor initially is the main pathway of seawater intrusion to the onshore portion of the aquifer. It is likely that leakage generally is the dominant mechanism of recharge and initial cause of seawater intrusion for poorly-confined, stratified coastal aquifers. This analysis suggests that a significant time interval follows the initial observation of seawater intrusion, during which remedial action can be taken to control lateral flow through the offshore outcrop, which ultimately will be the largest component of future intrusion in these aquifers.


Journal of Hydrology | 1989

An analysis of trichloroethylene movement in groundwater at castle Air Force Base, California

Lizanne Avon; John D. Bredehoeft

Abstract A trichloroethylene (TCE) plume has been identified in the groundwater under a U.S. Air Force Base in the Central Valley of California. An areal, two-dimensional numerical solute transport model indicates that the movement of TCE due to advection, dispersion, and linear sorption is simulated over a 25-year historic period. The model is used in several ways: (1) to estimate the extent of the plume; (2) to confirm the likely sources of contamination as suggested by a soil organic vapor survey of the site; and (3) to make predictions about future movement of the plume. Despite the noisy and incomplete data set, the model reproduces the general trends in contamination at a number of observation wells. The analysis indicates that soil organic vapor monitoring is an effective tool for identifying contaminant source locations. Leaky sewer pipes and underground tanks are the indicated pathways for TCE to have entered the groundwater system. The chemical mass balance indicates that a total of about 100 gallons of TCE — a relatively small amount of organic solvent — has created the observed groundwater plume.

Collaboration


Dive into the John D. Bredehoeft's collaboration.

Top Co-Authors

Avatar

Hilton H. Cooper

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Istavros S. Papadopulos

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Leonard F. Konikow

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert A. Young

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Michael King

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Paul A. Hsieh

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stavros S. Papadopulos

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge