Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John F. Santarius is active.

Publication


Featured researches published by John F. Santarius.


Fusion Technology | 1986

Lunar Source of 3 He for Commercial Fusion Power

L.J. Wittenberg; John F. Santarius; Gerald L. Kulcinski

AbstractAn analysis of astrophysical information indicates that the solar wind has deposited an abundant, easily extractable source of 3He onto the surface of the moon. Apollo lunar samples indicat...


symposium on fusion technology | 1991

The ARIES-I Tokamak Reactor Study †

F. Najmabadi; R.W. Conn; C.G. Bathke; Leslie Bromberg; E.T. Cheng; Daniel R. Cohn; P.I.H. Cooke; Richard L. Creedon; D.A. Ehst; K. Evans; N. M. Ghoniem; S. P. Grotz; M. Z. Hasan; J.T. Hogan; J.S. Herring; A.W. Hyatt; E. Ibrahim; S.A. Jardin; Charles Kessel; M. Klasky; R. A. Krakowski; T. Kunugi; J.A. Leuer; J. Mandrekas; Rodger C. Martin; T.-K. Mau; R.L. Miller; Y-K.M. Peng; R. L. Reid; John F. Santarius

The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. Three ARIES visions are currently planned for the ARIES program. The ARIES-I design is a DT-burning reactor based on modest extrapolation from the present tokamak physics data base; ARIES-II is a DT-burning reactor which will employ potential advances in physics; and ARIES-III is a conceptual D-3He reactor. The first design to be completed is ARIES-I, a 1000 MWe power reactor. The key features of ARIES-I are: (1) a passively safe and low environmental impact design because of choice of low activation material throughout the fusion power core, (2) an acceptable cost of electricity, (3) a plasma with performance as close as possible to present-day experimental achievements, (4) a high performance, low activation, SiC composite blanket cooled by He, and (5) an advanced Rankine power cycle as planned for near term coal-fired plants. The ARIES-I research has also identified key physics and technology areas with the highest leverage for achieving attractive fusion power system.


Fusion Technology | 1992

Space Propulsion by Fusion in a Magnetic Dipole

Edward Teller; Alexander J. Glass; T. Kenneth Fowler; Akira Hasegawa; John F. Santarius

The unique advantages of fusion rocket propulsion systems for distant missions are explored using the magnetic dipole configurations as an example. The dipole is found to have features well suited to space applications. Parameters are presented for a system producing a specific power of kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power performance than nuclear electric fission systems. Possibilities to further increase the specific power toward 10 kW/kg are discussed, as is an approach to implementing the concept through proof-testing on the moon. 20 refs., 14 figs., 2 tabs.


IEEE Transactions on Plasma Science | 2010

The Science and Technologies for Fusion Energy With Lasers and Direct-Drive Targets

J. D. Sethian; D. G. Colombant; J. L. Giuliani; R.H. Lehmberg; M.C. Myers; S. P. Obenschain; A.J. Schmitt; J. Weaver; Matthew F. Wolford; F. Hegeler; M. Friedman; A. E. Robson; A. Bayramian; J. Caird; C. Ebbers; Jeffery F. Latkowski; W. Hogan; Wayne R. Meier; L.J. Perkins; K. Schaffers; S. Abdel Kahlik; K. Schoonover; D. L. Sadowski; K. Boehm; Lane Carlson; J. Pulsifer; F. Najmabadi; A.R. Raffray; M. S. Tillack; G.L. Kulcinski

We are carrying out a multidisciplinary multi-institutional program to develop the scientific and technical basis for inertial fusion energy (IFE) based on laser drivers and direct-drive targets. The key components are developed as an integrated system, linking the science, technology, and final application of a 1000-MWe pure-fusion power plant. The science and technologies developed here are flexible enough to be applied to other size systems. The scientific justification for this work is a family of target designs (simulations) that show that direct drive has the potential to provide the high gains needed for a pure-fusion power plant. Two competing lasers are under development: the diode-pumped solid-state laser (DPPSL) and the electron-beam-pumped krypton fluoride (KrF) gas laser. This paper will present the current state of the art in the target designs and lasers, as well as the other IFE technologies required for energy, including final optics (grazing incidence and dielectrics), chambers, and target fabrication, injection, and tracking technologies. All of these are applicable to both laser systems and to other laser IFE-based concepts. However, in some of the higher performance target designs, the DPPSL will require more energy to reach the same yield as with the KrF laser.


Fusion Science and Technology | 2005

Overview of University of Wisconsin Inertial-Electrostatic Confinement Fusion Research

John F. Santarius; G.L. Kulcinski; R. P. Ashley; David Boris; B. B. Cipiti; S. Krupakar Murali; Gregory R. Piefer; R. F. Radel; T.E. Radel; A.L. Wehmeyer

Abstract In Inertial Electrostatic Confinement (IEC) devices, a voltage difference between concentric, nearly transparent spherical grids accelerates ions to fusion-relevant velocities. The University of Wisconsin (UW) operates two IEC devices: a cylindrical aluminum chamber and a spherical, water-cooled, stainless-steel chamber, with a power supply capable of 75 mA and 200 kV. The research program aims to generate fusion reaction products for various applications, including protons for creating radioisotopes for nuclear medicine and neutrons for detecting clandestine materials. Most IEC devices worldwide, including the UW devices, presently operate primarily in a pressure range (1-10 mtorr) that allows ions to make only a few passes through the core before they charge exchange and lose substantial energy or they collide with cathode grid wires. It is believed that fusion rates can be raised by operating at a pressure where neutral gas does not impede ion flow, and a helicon ion source has been developed to explore operation at pressures of ~0.05 mtorr. The UW IEC research group uses proton detectors, neutron detectors, residual gas analyzers, and spectroscopic diagnostics. New diagnostic techniques have also been developed, including eclipse disks to localize proton production and chordwires to estimate ion fluxes using power balance.


Fusion Technology | 1989

Apollo - An advanced fuel fusion power reactor for the 21st century

G.L. Kulcinski; G. A. Emmert; James P. Blanchard; L. El-Guebaly; H.Y. Khater; John F. Santarius; M.E. Sawan; I.N. Sviatoslavsky; L.J. Wittenberg; R.J. Witt

A preconceptual design of a tokamak reactor fueled by a D-He-3 plasma is presented. A low aspect ratio (A=2-4) device is studied here but high aspect ratio devices (A > 6) may also be quite attractive. The Apollo D-He-3 tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The overall efficiency ranges from 37 to 52% depending on whether the bremsstrahlung energy is utilized. The low neutron wall loading (0.1 MW/m/sup 2/) allows a permanent first wall to be designed and the low nuclear decay heat enables the reactor to be classed as inherently safe. The cost of electricity from Apollo is > 40% lower than electricity from a similar sized DT reactor.


Fusion Science and Technology | 2007

Detection of highly enriched uranium using a pulsed D-D fusion source

R. F. Radel; G.L. Kulcinski; R. P. Ashley; John F. Santarius; G. A. Emmert; Gregory R. Piefer; J. H. Sorebo; David Boris; Brian J. Egle; Samuel J. Zenobia; E. C. Alderson; David Donovan

Abstract This paper overviews the work that has been done to date towards the development of a compact, reliable means to detect Highly Enriched Uranium (HEU) and other fissile materials utilizing a pulsed Inertial Electrostatic Confinement (IEC) D-D fusion device. To date, the UW IEC device has achieved 115 kV pulses in excess of 2 ampere, with pulsed neutron rates of 1.8x109 n/s during a 0.5 ms pulse at 10 Hz. MCNP modeling indicates that detection of samples of U-235 as small as 10 grams is achievable at current neutron production rates, and initial pulsed and steady-state HEU detection experiments have verified these results.


Physics of Plasmas | 2006

Study of fusion regimes in an inertial electrostatic confinement device using the new eclipse disk diagnostic

S. Krupakar Murali; B. B. Cipiti; John F. Santarius; G.L. Kulcinski

New diagnostics are required to understand the physics operation of an inertial electrostatic confinement (IEC) device. In an attempt to understand the fusion source regimes within the IEC device, a new diagnostic called the eclipse disk has been introduced. This diagnostic was used to exploit the byproduct protons’ energy difference between the deuterium-deuterium (D–D) and deuterium—an isotope of helium with two protons and one neutron (D–He3) reactions to study the contributions of the protons generated from various source regimes. These source regimes are divided into five categories namely: converged core, embedded, beam background, volume, and wall-surface sources. The eclipse disk diagnostic has provided the first confirmed evidence that D–He3 reactions are predominantly embedded reactions. It has been observed that at the present operating power levels (6–10kW) most of the D–D reactions occur in the volume of the chamber caused by the charge exchanged neutrals, and the converged core contribution ...


Fusion Science and Technology | 2003

Recent Progress in Steady State Fusion Using D-3He

R. P. Ashley; G.L. Kulcinski; John F. Santarius; S. Krupakar Murali; Gregory R. Piefer; B. B. Cipiti; R. F. Radel; J. Weidner

Abstract The University of Wisconsin (UW) inertial electrostatic confinement (IEC) facility has made significant progress since 2000. The operating voltage has doubled to 160 kV. The neutron production rate has increased by a factor of 2, from 4.9 x 107/s to 1.1 x 108s-1. The D-3He proton production rate has increased by, a factor of over 40. In addition new diagnostics have been developed, including a method to determine the spatial distribution of fusion reactions A new water cooled stainless steel chamber for higher power and lower pressure has been put into operation. Medical isotopes have been produced in an IEC device for the first time.


ieee npss symposium on fusion engineering | 1989

The ARIES-III D-/sup 3/He tokamak reactor: design-point determination and parametric studies

C.G. Bathke; K.A. Werley; R.L. Miller; R.A. Krakowski; John F. Santarius

The multi-institutional Advanced Reactor Innovation and Evaluation Study (ARIES) has examined the physics, technology, safety, and economic issues associated with the conceptual design of a tokamak magnetic-fusion reactor. The ARIES-I variant envisions a deuterium-tritium (D-T) fueled device based on advanced superconducting coil, blanket, and power-conversion technologies and a modest extrapolation of existing tokamak physics. Key aspects of the ARIES-I physics model are summarized, and the engineering and costing models are discussed. Results of parametric studies leading to the identification of a design point to be subjected to detailed analysis and integration as well as to characterize the ARIES-I operating space are presented.<<ETX>>

Collaboration


Dive into the John F. Santarius's collaboration.

Top Co-Authors

Avatar

G.L. Kulcinski

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

G. A. Emmert

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Gerald L. Kulcinski

Wisconsin Alumni Research Foundation

View shared research outputs
Top Co-Authors

Avatar

S. Krupakar Murali

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

I.N. Sviatoslavsky

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Gregory R. Piefer

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

H.Y. Khater

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

L. El-Guebaly

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

L.J. Wittenberg

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

R. P. Ashley

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge