Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Fernandes is active.

Publication


Featured researches published by John Fernandes.


Genome Research | 2009

Clusters and superclusters of phased small RNAs in the developing inflorescence of rice

Cameron Johnson; Anna Kasprzewska; Kristin Tennessen; John Fernandes; Guo-Ling Nan; Virginia Walbot; Venkatesan Sundaresan; Vicki Vance; Lewis H. Bowman

To address the role of small regulatory RNAs in rice development, we generated a large data set of small RNAs from mature leaves and developing roots, shoots, and inflorescences. Using a spatial clustering algorithm, we identified 36,780 genomic groups of small RNAs. Most consisted of 24-nt RNAs that are expressed in all four tissues and enriched in repeat regions of the genome; 1029 clusters were composed primarily of 21-nt small RNAs and, strikingly, 831 of these contained phased RNAs and were preferentially expressed in developing inflorescences. Thirty-eight of the 24-mer clusters were also phased and preferentially expressed in inflorescences. The phased 21-mer clusters derive from nonprotein coding, nonrepeat regions of the genome and are grouped together into superclusters containing 10-46 clusters. The majority of these 21-mer clusters (705/831) are flanked by a degenerate 22-nt motif that is offset by 12 nt from the main phase of the cluster. Small RNAs complementary to these flanking 22-nt motifs define a new miRNA family, which is conserved in maize and expressed in developing reproductive tissues in both plants. These results suggest that the biogenesis of phased inflorescence RNAs resembles that of tasiRNAs and raise the possibility that these novel small RNAs function in early reproductive development in rice and other monocots.


PLOS Genetics | 2009

Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs.

Carol Soderlund; Anne Descour; Dave Kudrna; Matthew Bomhoff; Lomax Boyd; Jennifer Currie; Angelina Angelova; Kristi Collura; Marina Wissotski; Elizabeth Ashley; Darren J. Morrow; John Fernandes; Virginia Walbot; Yeisoo Yu

Full-length cDNA (FLcDNA) sequencing establishes the precise primary structure of individual gene transcripts. From two libraries representing 27 B73 tissues and abiotic stress treatments, 27,455 high-quality FLcDNAs were sequenced. The average transcript length was 1.44 kb including 218 bases and 321 bases of 5′ and 3′ UTR, respectively, with 8.6% of the FLcDNAs encoding predicted proteins of fewer than 100 amino acids. Approximately 94% of the FLcDNAs were stringently mapped to the maize genome. Although nearly two-thirds of this genome is composed of transposable elements (TEs), only 5.6% of the FLcDNAs contained TE sequences in coding or UTR regions. Approximately 7.2% of the FLcDNAs are putative transcription factors, suggesting that rare transcripts are well-enriched in our FLcDNA set. Protein similarity searching identified 1,737 maize transcripts not present in rice, sorghum, Arabidopsis, or poplar annotated genes. A strict FLcDNA assembly generated 24,467 non-redundant sequences, of which 88% have non-maize protein matches. The FLcDNAs were also assembled with 41,759 FLcDNAs in GenBank from other projects, where semi-strict parameters were used to identify 13,368 potentially unique non-redundant sequences from this project. The libraries, ESTs, and FLcDNA sequences produced from this project are publicly available. The annotated EST and FLcDNA assemblies are available through the maize FLcDNA web resource (www.maizecdna.org).


Science | 2010

Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen.

David S. Skibbe; Gunther Doehlemann; John Fernandes; Virginia Walbot

Tailor-Made Tumor The biotrophic smut pathogen Ustilago maydis specifically infects the important crop plant, maize. The pathogen elicits large tumors on all aerial maize organs by redirecting primordia into a tumor pathway, and maize developmental mutants can disrupt tumor progression. Skibbe et al. (p. 89) examined gene expression in parallel in both the host plant and the smut pathogen and found that organ-specific gene expression patterns were required in both for tumor formation. Thus, fungal pathogens may exert distinct effects on different organs and tissues in plants, perhaps explaining the diverse pathologies that can be produced in diseased plants. Transcriptionally different expression occurs between infected maize tissues and the corn smut infecting these tissues. Infection of maize by corn smut (Ustilago maydis) provides an agronomically important model of biotrophic host-pathogen interactions. After penetration of the maize epidermis, fungal colonization of host tissue induces tumor formation on all aerial maize organs. We hypothesized that transformation of different primordia into plant tumors would require organ-specific gene expression by both host and pathogen and documented these differences by transcriptome profiling. Phenotypic screening of U. maydis mutants deleted for genes encoding secreted proteins and maize mutants with organ-specific defects confirmed organ-restricted tumorigenesis. This is the foundation for exploring how individual pathogen effectors, deployed in an organ-specific pattern, interact with host factors to reprogram normal ontogeny into a tumor pathway.


Plant Physiology | 2002

Comparison of RNA expression profiles based on maize expressed sequence tag frequency analysis and micro-array hybridization

John Fernandes; Volker Brendel; Xiaowu Gai; Shailesh Lal; Vicki L. Chandler; Rangasamy P. Elumalai; David W. Galbraith; Elizabeth A. Pierson; Virginia Walbot

Assembly of 73,000 expressed sequence tags (ESTs) representing multiple organs and developmental stages of maize (Zea mays) identified approximately 22,000 tentative unique genes (TUGs) at the criterion of 95% identity. Based on sequence similarity, overlap between any two of nine libraries with more than 3,000 ESTs ranged from 4% to 20% of the constituent TUGs. The most abundant ESTs were recovered from only one or a minority of the libraries, and only 26 EST contigs had members from all nine EST sets (presumably representing ubiquitously expressed genes). For several examples, ESTs for different members of gene families were detected in distinct organs. To study this further, two types of micro-array slides were fabricated, one containing 5,534 ESTs from 10- to 14-d-old endosperm, and the other 4,844 ESTs from immature ear, estimated to represent about 2,800 and 2,500 unique genes, respectively. Each array type was hybridized with fluorescent cDNA targets prepared from endosperm and immature ear poly(A+) RNA. Although the 10- to 14-d-old postpollination endosperm TUGs showed only 12% overlap with immature ear TUGs, endosperm target hybridized with 94% of the ear TUGs, and ear target hybridized with 57% of the endosperm TUGs. Incomplete EST sampling of low-abundance transcripts contributes to an underestimate of shared gene expression profiles. Reassembly of ESTs at the criterion of 90% identity suggests how cross hybridization among gene family members can overestimate the overlap in genes expressed in micro-array hybridization experiments.


Genome Biology | 2006

Comparative profiling of the sense and antisense transcriptome of maize lines

Jiong Ma; Darren J. Morrow; John Fernandes; Virginia Walbot

BackgroundThere are thousands of maize lines with distinctive normal as well as mutant phenotypes. To determine the validity of comparisons among mutants in different lines, we first address the question of how similar the transcriptomes are in three standard lines at four developmental stages.ResultsFour tissues (leaves, 1 mm anthers, 1.5 mm anthers, pollen) from one hybrid and one inbred maize line were hybridized with the W23 inbred on Agilent oligonucleotide microarrays with 21,000 elements. Tissue-specific gene expression patterns were documented, with leaves having the most tissue-specific transcripts. Haploid pollen expresses about half as many genes as the other samples. High overlap of gene expression was found between leaves and anthers. Anther and pollen transcript expression showed high conservation among the three lines while leaves had more divergence. Antisense transcripts represented about 6 to 14 percent of total transcriptome by tissue type but were similar across lines. Gene Ontology (GO) annotations were assigned and tabulated. Enrichment in GO terms related to cell-cycle functions was found for the identified antisense transcripts. Microarray results were validated via quantitative real-time PCR and by hybridization to a second oligonucleotide microarray platform.ConclusionDespite high polymorphisms and structural differences among maize inbred lines, the transcriptomes of the three lines displayed remarkable similarities, especially in both reproductive samples (anther and pollen). We also identified potential stage markers for maize anther development. A large number of antisense transcripts were detected and implicated in important biological functions given the enrichment of particular GO classes.


Genome Biology | 2008

Male reproductive development: gene expression profiling of maize anther and pollen ontogeny

Jiong Ma; David S. Skibbe; John Fernandes; Virginia Walbot

BackgroundDuring flowering, central anther cells switch from mitosis to meiosis, ultimately forming pollen containing haploid sperm. Four rings of surrounding somatic cells differentiate to support first meiosis and later pollen dispersal. Synchronous development of many anthers per tassel and within each anther facilitates dissection of carefully staged maize anthers for transcriptome profiling.ResultsGlobal gene expression profiles of 7 stages representing 29 days of anther development are analyzed using a 44 K oligonucleotide array querying approximately 80% of maize protein-coding genes. Mature haploid pollen containing just two cell types expresses 10,000 transcripts. Anthers contain 5 major cell types and express >24,000 transcript types: each anther stage expresses approximately 10,000 constitutive and approximately 10,000 or more transcripts restricted to one or a few stages. The lowest complexity is present during meiosis. Large suites of stage-specific and co-expressed genes are identified through Gene Ontology and clustering analyses as functional classes for pre-meiotic, meiotic, and post-meiotic anther development. MADS box and zinc finger transcription factors with constitutive and stage-limited expression are identified.ConclusionsWe propose that the extensive gene expression of anther cells and pollen represents the key test of maize genome fitness, permitting strong selection against deleterious alleles in diploid anthers and haploid pollen. Because flowering plants show a substantial bias for male-sterile compared to female-sterile mutations, we propose that this fitness test is general. Because both somatic and germinal cells are transcriptionally quiescent during meiosis, we hypothesize that successful completion of meiosis is required to trigger maturation of anther somatic cells.


Genome Biology | 2004

Genome-wide mutagenesis of Zea mays L. using RescueMu transposons

John Fernandes; Qunfeng Dong; Bret Schneider; Darren J. Morrow; Guo-Ling Nan; Volker Brendel; Virginia Walbot

Derived from the maize Mu1 transposon, RescueMu provides strategies for maize gene discovery and mutant phenotypic analysis. 9.92 Mb of gene-enriched sequences next to RescueMu insertion sites were co-assembled with expressed sequence tags and analyzed. Multiple plasmid recoveries identified probable germinal insertions and screening of RescueMu plasmid libraries identified plants containing probable germinal insertions. Although frequently recovered parental insertions and insertion hotspots reduce the efficiency of gene discovery per plasmid, RescueMu targets a large variety of genes and produces knockout mutants.


Genome Biology | 2002

Gene-expression profile comparisons distinguish seven organs of maize

Yangrae Cho; John Fernandes; Soo-Hwan Kim; Virginia Walbot

BackgroundA maize array was fabricated with 5,376 unique expressed sequence tag (EST) clones sequenced from 4-day-old roots, immature ears and adult organ cDNA libraries. To elucidate organ relationships, relative mRNA levels were quantified by hybridization with embryos, three maize vegetative organs (leaf blades, leaf sheaths and roots) from multiple developmental stages, husk leaves and two types of floral organs (immature ears and silks).ResultsClustering analyses of the hybridization data suggest that maize utilizes both the PEPCK and NADP-ME C4 photosynthetic routes as genes in these pathways are co-regulated. Husk RNA has a gene-expression profile more similar to floral organs than to vegetative leaves. Only 7% of the genes were highly organ specific, showing over a fourfold difference in at least one of 12 comparisons and 37% showed a two- to fourfold difference. The majority of genes were expressed in diverse organs with little difference in transcript levels. Cross-hybridization among closely related genes within multigene families could obscure tissue specificity. As a first step in elucidating individual gene-expression patterns, we show that 45-nucleotide oligo probes produce signal intensities and signal ratios comparable to PCR probes on the same matrix.ConclusionsGene-expression profile studies with cDNA microarrays provide a new molecular tool for defining plant organs and their relationships and for discovering new biological processes in silico. cDNA microarrays are insufficient for differentiating recently duplicated genes. Gene-specific oligo probes printed along with cDNA probes can query individual gene-expression profiles and gene families simultaneously.


BMC Genomics | 2011

Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize

Paula Casati; Mabel Campi; Darren J. Morrow; John Fernandes; Virginia Walbot

BackgroundUnder normal solar fluence, UV-B damages macromolecules, but it also elicits physiological acclimation and developmental changes in plants. Excess UV-B decreases crop yield. Using a treatment twice solar fluence, we focus on discovering signals produced in UV-B-irradiated maize leaves that translate to systemic changes in shielded leaves and immature ears.ResultsUsing transcriptome and proteomic profiling, we tracked the kinetics of transcript and protein alterations in exposed and shielded organs over 6 h. In parallel, metabolic profiling identified candidate signaling molecules based on rapid increase in irradiated leaves and increased levels in shielded organs; pathways associated with the synthesis, sequestration, or degradation of some of these potential signal molecules were UV-B-responsive. Exposure of just the top leaf substantially alters the transcriptomes of both irradiated and shielded organs, with greater changes as additional leaves are irradiated. Some phenylpropanoid pathway genes are expressed only in irradiated leaves, reflected in accumulation of pathway sunscreen molecules. Most protein changes detected occur quickly: approximately 92% of the proteins in leaves and 73% in immature ears changed after 4 h UV-B were altered by a 1 h UV-B treatment.ConclusionsThere were significant transcriptome, proteomic, and metabolomic changes under all conditions studied in both shielded and irradiated organs. A dramatic decrease in transcript diversity in irradiated and shielded leaves occurs between 0 h and 1 h, demonstrating the susceptibility of plants to short term UV-B spikes as during ozone depletion. Immature maize ears are highly responsive to canopy leaf exposure to UV-B.


Plant Journal | 2010

The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis‐regulation of metabolic functions

Dongxue Wang; Juan A. Oses-Prieto; Kathy H. Li; John Fernandes; Alma L. Burlingame; Virginia Walbot

Maize anther ontogeny is complex, with the expression of more than 30,000 genes over 4 days of cell proliferation, cell fate acquisition and the start of meiosis. Although many male-sterile mutants disrupt these key steps, few have been investigated in detail. The terminal phenotypes of Zea mays (maize) male sterile 8 (ms8) are small anthers exhibiting meiotic failure. Here, we document much earlier defects: ms8 epidermal cells are normal in number but fail to elongate, and there are fewer, larger tapetal cells that retain, rather than secrete, their contents. ms8 meiocytes separate early, have extra space between them, occupied by excess callose, and the meiotic dyads abort. Thousands of transcriptome changes occur in ms8, including ectopic activation of genes not expressed in fertile siblings, failure to express some genes, differential expression compared with fertile siblings and about 40% of the differentially expressed transcripts appear precociously. There is a high correlation between mRNA accumulation assessed by microarray hybridization and quantitative real-time reverse transcriptase polymerase chain reaction. Sixty-three differentially expressed proteins were identified after two-dimensional gel electrophoresis followed by liquid chromatography tandem mass spectroscopy, including those involved in metabolism, plasmodesmatal remodeling and cell division. The majority of these were not identified by differential RNA expression, demonstrating the importance of proteomics in defining developmental mutants.

Collaboration


Dive into the John Fernandes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge