Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luis Garcia-Carreras is active.

Publication


Featured researches published by Luis Garcia-Carreras.


Journal of Geophysical Research | 2014

A seamless assessment of the role of convection in the water cycle of the west African Monsoon

Cathryn E. Birch; Douglas J. Parker; John H. Marsham; D. Copsey; Luis Garcia-Carreras

A suite of 40 day UK Met Office Unified Model simulations over West Africa during summer 2006 are analyzed to investigate the causes of biases in the position of the rainbelt and to understand the role of convection in the regional water budget. The simulations include climate, global operational, and limited area runs (grid spacings from 1.5 to 40 km), including two 12 km runs, one with parameterized and one with explicit convection. The most significant errors in the water cycle terms occur in the simulations with parameterized convection, associated with the diurnal cycle and the location of the convection. Errors in the diurnal cycle increase the northward advection of moisture out of the Sahel toward the Sahara but decrease the advection of moisture into the Sahel from further south, which limits the availability of moisture for Sahelian rainfall. These biases occur within the first 24 h, showing that they originate from the representation of fast physical processes, specifically, the convection scheme. Once these rainfall regimes have been established, the terms of the water budgets act to reinforce the biases, effectively locking the rainbelts latitude. One of the simulations with parameterized convection does, however, produce a better latitudinal distribution of rainfall because on the first day it is better able to trigger convection in the Sahel. Accurate representation of the diurnal cycle of convection and the ability to trigger convection in a high convective inhibition environment is key to capturing the water cycle of the region and will improve the representation of the West African Monsoon.


Geophysical Research Letters | 2015

The impact of Amazonian deforestation on Amazon basin rainfall

D. V. Spracklen; Luis Garcia-Carreras

We completed a meta-analysis of regional and global climate model simulations (n = 96) of the impact of Amazonian deforestation on Amazon basin rainfall. Across all simulations, mean (±1σ) change in annual mean Amazon basin rainfall was −12 ± 11%. Variability in simulated rainfall was not explained by differences in model resolution or surface parameters. Across all simulations we find a negative linear relationship between rainfall and deforestation extent, although individual studies often simulate a nonlinear response. Using the linear relationship, we estimate that deforestation in 2010 has reduced annual mean rainfall across the Amazon basin by 1.8 ± 0.3%, less than the interannual variability in observed rainfall. This may explain why a reduction in Amazon rainfall has not consistently been observed. We estimate that business-as-usual deforestation (based on deforestation rates prior to 2004) would lead to an 8.1 ± 1.4% reduction in annual mean Amazon basin rainfall by 2050, greater than natural variability.


Journal of the Atmospheric Sciences | 2011

What is the Mechanism for the Modification of Convective Cloud Distributions by Land Surface–Induced Flows?

Luis Garcia-Carreras; Douglas J. Parker; John H. Marsham

Abstract The aim of this study is to determine the mechanism that modulates the initiation of convection within convergence zones caused by land surface–induced mesoscale flows. An idealized modeling approach linked quantitatively to observations of vegetation breezes over tropical Benin was used. A large-eddy model was used with a prescribed land surface describing heterogeneities between crop and forest over which vegetation breezes have been observed. The total surface fluxes were constant but the Bowen ratio varied with vegetation type. The heterogeneous land surface created temperature differences consistent with observations, which in turn forced mesoscale winds and convection at the convergence zones over the crop boundaries. At these convergence zones optimum conditions for the initiation of convection were found in the afternoon; the equivalent potential temperature was higher in the convergence zones than over anywhere else in the domain, due to reduced entrainment, and the mesoscale convergence...


Journal of Geophysical Research | 2010

Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer

Luis Garcia-Carreras; Douglas J. Parker; Christopher M. Taylor; C. E. Reeves; Jennifer G. Murphy

This study uses aircraft observations over the Republic of Benin from the African Monsoon Multidisciplinary Analyses (AMMA) campaign to investigate the impact of vegetation heterogeneities on the dynamics within the planetary boundary layer, such as convection, transport, and mixing. Isoprene, a biogenic volatile organic compound emitted primarily by woody vegetation, was used as a tracer for transport to link the land surface to the boundary layer properties. Associated to planetary boundary layer (PBL) temperature gradients at vegetation boundaries, a persistent mesoscale organization of the winds which controlled patterns in the formation of cumulus congestus clouds was observed. A strong relationship among PBL temperatures, meridional wind velocity, isoprene concentrations, and fraction of forest or shrub cover was found, corroborating the land surface forcing of the observed dynamics. The observations show that the convergence zones tended to occur on the southern edge of warm surface and atmospheric anomalies. The northerly synoptic wind appears to have increased the coherency of the southerly part of the mesoscale flow and displaced the convergence zones southward. The relationships between the PBL potential temperatures and the meridional wind and isoprene concentrations were spatially coherent down to wavelengths of 10 and 8 km, respectively. A seasonal climatology of visible satellite data shows enhanced cloud cover in the afternoon over cropland, suggesting that the results presented are not limited to this case study but are of climatological significance in the region.


Journal of the Atmospheric Sciences | 2015

The Turbulent Structure and Diurnal Growth of the Saharan Atmospheric Boundary Layer

Luis Garcia-Carreras; Douglas J. Parker; John H. Marsham; Philip D. Rosenberg; Ian M. Brooks; A. P. Lock; Franco Marenco; J. B. McQuaid; Matthew Hobby

The turbulent structure and growth of the remote Saharan atmospheric boundary layer (ABL) is described with in situ radiosonde and aircraft measurements and a large-eddy simulation model. A month of radiosonde data from June 2011 provides a mean profile of the midday Saharan ABL, which is characterized by a well-mixed convective boundary layer, capped by a small temperature inversion (,1K) and a deep, near-neutral residual layer. The boundary layer depth varies by up to 100% over horizontal distances of a few kilometers due to turbulent processes alone. The distinctive vertical structure also leads to unique boundary layer processes, such as detrainment of the warmest plumes across the weak temperature inversion, which slows down the warming and growth of the convective boundary layer. As the boundary layer grows, overshooting plumes can also entrain freetropospheric air into the residual layer, forming a second entrainment zone that acts to maintain the inversion above the convective boundary layer, thus slowing down boundary layer growth further. A single-column model is unable to accurately reproduce the evolution of the Saharan boundary layer, highlighting the difficulty of representing such processes in large-scale models. These boundary layer processes are special to the Sahara, and possiblyhot, dry,desertenvironmentsingeneral, andhaveimplicationsforthelarge-scalestructureoftheSaharan heat low. The growth of the boundary layer influences the vertical redistribution of moisture and dust, and the spatial coverage and duration of clouds, with large-scale dynamical and radiative implications.


Journal of Geophysical Research | 2014

Quantifying particle size and turbulent scale dependence of dust flux in the Sahara using aircraft measurements

Philip D. Rosenberg; Douglas J. Parker; Claire L. Ryder; John H. Marsham; Luis Garcia-Carreras; J. R. Dorsey; Ian M. Brooks; Angela R. Dean; J. Crosier; J. B. McQuaid; Richard Washington

The first size-resolved airborne measurements of dust fluxes and the first dust flux measurements from the central Sahara are presented and compared with a parameterization by Kok (2011a). High-frequency measurements of dust size distribution were obtained from 0.16 to 300 µm diameter, and eddy covariance fluxes were derived. This is more than an order of magnitude larger size range than previous flux estimates. Links to surface emission are provided by analysis of particle drift velocities. Number flux is described by a −2 power law between 1 and 144 µm diameter, significantly larger than the 12 µm upper limit suggested by Kok (2011a). For small particles, the deviation from a power law varies with terrain type and the large size cutoff is correlated with atmospheric vertical turbulent kinetic energy, suggesting control by vertical transport rather than emission processes. The measured mass flux mode is in the range 30–100 µm. The turbulent scales important for dust flux are from 0.1 km to 1–10 km. The upper scale increases during the morning as boundary layer depth and eddy size increase. All locations where large dust fluxes were measured had large topographical variations. These features are often linked with highly erodible surface features, such as wadis or dunes. We also hypothesize that upslope flow and flow separation over such features enhance the dust flux by transporting large particles out of the saltation layer. The tendency to locate surface flux measurements in open, flat terrain means these favored dust sources have been neglected in previous studies.


Journal of Climate | 2015

Sea-Breeze Dynamics and Convection Initiation: The Influence of Convective Parameterization in Weather and Climate Model Biases

Cathryn E. Birch; Malcolm J. Roberts; Luis Garcia-Carreras; Duncan Ackerley; Michael J. Reeder; A. P. Lock; Reinhard Schiemann

AbstractThere are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis s...


Geophysical Research Letters | 2017

Cross-Saharan transport of water vapor via recycled cold pool outflows from moist convection

Tomasz M. Trzeciak; Luis Garcia-Carreras; John H. Marsham

Abstract Very sparse data have previously limited observational studies of meteorological processes in the Sahara. We present an observed case of convectively driven water vapor transport crossing the Sahara over 2.5 days in June 2012, from the Sahel in the south to the Atlas in the north. A daily cycle is observed, with deep convection in the evening generating moist cold pools that fed the next days convection; the convection then generated new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses were able to capture the direction of the transport but not its full extent, particularly at night when cold pools are most active, and analyses missed much of the water content of cold pools. The results highlight the importance of cold pools for moisture transport, dust and clouds, and demonstrate the need to include these processes in models in order to improve the representation of Saharan atmosphere.


Journal of Applied Meteorology and Climatology | 2015

The Impact of Parameterized Convection on the Simulation of Crop Processes

Luis Garcia-Carreras; Andrew J. Challinor; Ben Parkes; Cathryn E. Birch; Nicklin Kj; Douglas J. Parker

Global climate and weather models are a key tool for the prediction of future crop productivity, but they all rely on parameterizations of atmospheric convection, which often produce significant biases in rainfall characteristics over the tropics. The authors evaluate the impact of these biases by driving the General Large Area Model for annual crops (GLAM) with regional-scale atmospheric simulations of one cropping season over West Africa at different resolutions, with and without a parameterization of convection, and compare these with a GLAM run driven by observations. The parameterization of convection produces too light and frequent rainfall throughout the domain, as compared with the short, localized, high-intensity events in the observations and in the convection-permitting runs. Persistent light rain increases surface evaporation, and much heavier rainfall is required to trigger planting. Planting is therefore delayed in the runs with parameterized convection and occurs at a seasonally cooler time, altering the environmental conditions experienced by the crops. Even at high resolutions, runs driven by parameterized convection underpredict the small-scale variability in yields produced by realistic rainfall patterns. Correcting the distribution of rainfall frequencies and intensities before use in crop models will improve the process-based representation of the crop life cycle, increasing confidence in the predictions of crop yield. The rainfall biases described here are a common feature of parameterizations of convection, and therefore the crop-model errors described are likely to occur when using any global weather or climate model, thus remaining hidden when using climate-model intercomparisons to evaluate uncertainty.


Journal of Hydrometeorology | 2017

Observations of Increased Cloud Cover over Irrigated Agriculture in an Arid Environment

Luis Garcia-Carreras; John H. Marsham; D. V. Spracklen

AbstractIrrigated agriculture accounts for 20% of global cropland area and may alter climate locally and globally, but feedbacks on clouds and rainfall remain highly uncertain, particularly in arid regions. Nonrenewable groundwater in arid regions accounts for 20% of global irrigation water demand, and quantifying these feedbacks is crucial for the prediction of long-term water use in a changing climate. Here, satellite data are used to show how irrigated crops in an arid environment alter land surface properties, cloud cover, and rainfall patterns. Land surface temperatures (LSTs) over the cropland are 5–7 K lower than their surroundings, despite a lower albedo, suggesting that Bowen ratio is strongly reduced (and latent heat fluxes increased) over the irrigated cropland. Daytime cloud cover is increased by up to 15% points (a relative increase of 60%), with increased cloud development in the morning and a greater afternoon peak in cloud. Cloud cover is significantly correlated with interannual variation...

Collaboration


Dive into the Luis Garcia-Carreras's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. E. Reeves

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge