Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Laterra is active.

Publication


Featured researches published by John Laterra.


The New England Journal of Medicine | 2009

Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449

Charles M. Rudin; Christine L. Hann; John Laterra; Robert L. Yauch; Christopher A. Callahan; Ling Fu; Thomas Holcomb; Jeremy Stinson; Stephen E. Gould; Barbara Coleman; Patricia LoRusso; Daniel D. Von Hoff; Frederic J. de Sauvage; Jennifer A. Low

Medulloblastoma is the most common malignant brain tumor in children. Aberrant activation of the hedgehog signaling pathway is strongly implicated in the development of some cases of medulloblastoma. A 26-year-old man with metastatic medulloblastoma that was refractory to multiple therapies was treated with a novel hedgehog pathway inhibitor, GDC-0449; treatment resulted in rapid (although transient) regression of the tumor and reduction of symptoms. Molecular analyses of tumor specimens obtained before treatment suggested that there was activation of the hedgehog pathway, with loss of heterozygosity and somatic mutation of the gene encoding patched homologue 1 (PTCH1), a key negative regulator of hedgehog signaling.


Magnetic Resonance in Medicine | 2003

Amide proton transfer (APT) contrast for imaging of brain tumors

Jinyuan Zhou; Bachchu Lal; David A. Wilson; John Laterra; Peter C.M. van Zijl

In this work we demonstrate that specific MR image contrast can be produced in the water signal that reflects endogenous cellular protein and peptide content in intracranial rat 9L gliosarcomas. Although the concentration of these mobile proteins and peptides is only in the millimolar range, a detection sensitivity of several percent on the water signal (molar concentration) was achieved. This was accomplished with detection sensitivity enhancement by selective radiofrequency (RF) labeling of the amide protons, and by utilizing the effective transfer of this label to water via hydrogen exchange. Brain tumors were also assessed by conventional T1‐weighted, T2‐weighted, and diffusion‐weighted imaging. Whereas these commonly‐used approaches yielded heterogeneous images, the new amide proton transfer (APT) technique showed a single well‐defined region of hyperintensity that was assigned to brain tumor tissue. Magn Reson Med 50:1120–1126, 2003.


Neuro-oncology | 2005

Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis

Roger Abounader; John Laterra

The multifunctional growth factor scatter factor/hepatocyte growth factor (SF/HGF) and its receptor tyrosine kinase c-Met have emerged as key determinants of brain tumor growth and angiogenesis. SF/HGF and c-Met are expressed in brain tumors, the expression levels frequently correlating with tumor grade, tumor blood vessel density, and poor prognosis. Overexpression of SF/HGF and/or c-Met in brain tumor cells enhances their tumorigenicity, tumor growth, and tumor-associated angiogenesis. Conversely, inhibition of SF/HGF and c-Met in experimental tumor xenografts leads to inhibition of tumor growth and tumor angiogenesis. SF/HGF is expressed and secreted mainly by tumor cells and acts on c-Met receptors that are expressed in tumor cells and vascular endothelial cells. Activation of c-Met leads to induction of proliferation, migration, and invasion and to inhibition of apoptosis in tumor cells as well as in tumor vascular endothelial cells. Activation of tumor endothelial c-Met also induces extracellular matrix degradation, tubule formation, and angiogenesis in vivo. SF/HGF induces brain tumor angiogenesis directly through only partly known mechanisms and indirectly by regulating other angiogenic pathways such as VEGF. Different approaches to inhibiting SF/HGF and c-Met have been recently developed. These include receptor antagonism with SF/HGF fragments such as NK4, SF/HGF, and c-Met expression inhibition with U1snRNA/ribozymes; competitive ligand binding with soluble Met receptors; neutralizing antibodies to SF/HGF; and small molecular tyrosine kinase inhibitors. Use of these inhibitors in experimental tumor models leads to inhibition of tumor growth and angiogenesis. In this review, we summarize current knowledge of how the SF/HGF:c-Met pathway contributes to brain tumor malignancy with a focus on glioma angiogenesis.


Magnetic Resonance in Medicine | 2008

Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging

Jinyuan Zhou; Jaishri O. Blakeley; Jun Hua; John Laterra; Martin G. Pomper; Peter C. M. van Zijl

Amide proton transfer (APT) imaging is a type of chemical exchange–dependent saturation transfer (CEST) magnetic resonance imaging (MRI) in which amide protons of endogenous mobile proteins and peptides in tissue are detected. Initial studies have shown promising results for distinguishing tumor from surrounding brain in patients, but these data were hampered by magnetic field inhomogeneity and a low signal‐to‐noise ratio (SNR). Here a practical six‐offset APT data acquisition scheme is presented that, together with a separately acquired CEST spectrum, can provide B0‐inhomogeneity corrected human brain APT images of sufficient SNR within a clinically relevant time frame. Data from nine brain tumor patients at 3T shows that APT intensities were significantly higher in the tumor core, as assigned by gadolinium‐enhancement, than in contralateral normal‐appearing white matter (CNAWM) in patients with high‐grade tumors. Conversely, APT intensities in tumor were indistinguishable from CNAWM in patients with low‐grade tumors. In high‐grade tumors, regions of increased APT extended outside of the core into peripheral zones, indicating the potential of this technique for more accurate delineation of the heterogeneous areas of brain cancers. Magn Reson Med 60:842–849, 2008.


The FASEB Journal | 2001

In vivo targeting of SF/HGF and c-met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis

Roger Abounader; Bachchu Lal; Carey Luddy; Gary Koe; Beverly Davidson; Eliot M. Rosen; John Laterra

The multifunctional growth factor scatter factor/hepatocyte growth factor (SF/HGF) and its receptor c‐met have been implicated in the genesis, malignant progression, and chemo/radioresistance of multiple human malignancies, including gliomas. We examined the antitumor effects of targeting SF/HGF and c‐met expression in pre‐established glioma xenografts by using novel chimeric U1snRNA/ribozymes. Transient expression of anti‐SF/HGF and anti‐c‐met U1snRNA/ribozymes inhibited SF/HGF and c‐met expression, c‐met receptor activation, tumor cell migration, and anchorage‐independent colony formation in vitro. Delivery of U1snRNA/ribozymes to established subcutaneous glioma xenografts via liposome‐DNA complexes significantly inhibited tumor growth as well as tumor SF/HGF and c‐met expression levels. Histologic analysis of tumors treated with U1snRNA/ribozymes showed a significant decrease in blood vessel density, an increase in activation of the pro‐apoptotic enzyme caspase‐3, and an increase in tumor cell apoptosis. Treatment of animals bearing intracranial glioma xenografts with anti‐SF/HGF and anti‐c‐met U1snRNA/ribozymes by either intratumoral injections of adenoviruses expressing the transgenes or intravenous injections of U1snRNA/ribozyme‐liposome complexes substantially inhibited tumor growth and promoted animal survival. We demonstrate that SF/HGF and/or c‐met expression can be targeted in vivo to inhibit tumor growth. In addition, our findings represent the first in vivo application of chimeric U1snRNA/ribozymes, which have numerous potential therapeutic gene‐targeting applications.


Clinical Cancer Research | 2006

Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts.

K. Jin Kim; Lihong Wang; Yi Chi Su; G. Yancey Gillespie; Amandeep Salhotra; Bachchu Lal; John Laterra

PURPOSE: Hepatocyte growth factor (HGF) and its receptor Met are involved in the initiation, progression, and metastasis of numerous systemic and central nervous system tumors. Thus, an anti-HGF monoclonal antibody (mAb) capable of blocking the HGF-Met interaction could have broad applicability in cancer therapy. EXPERIMENTAL DESIGN: An anti-HGF mAb L2G7 that blocks binding of HGF to Met was generated by hybridoma technology, and its ability to inhibit the various biological activities of HGF was measured by in vitro assays. The ability of L2G7 to inhibit the growth of tumors was determined by establishing s.c. and intracranial xenografts of human U87 and U118 glioma cell lines in nude mice, and treatment with 100 microg of L2G7 or control given i.p. twice per week. RESULTS: MAb L2G7 strongly inhibited all biological activities of HGF measured in vitro, including cell proliferation, cell scattering, and endothelial tubule formation. Treatment with L2G7 completely inhibited the growth of established s.c. xenografts in nude mice. Moreover, systemic administration of L2G7 from day 5 induced the regression of intracranial U87 xenografts and dramatically prolonged the survival of tumor-bearing mice from a median of 39 to >90 days. L2G7 treatment of large intracranial tumors (average tumor size, 26.7 mm(3)) from day 18 induced substantial tumor regression (control group, 134.3 mm(3); L2G7 treated group, 11.7 mm(3)) by day 29 and again prolonged animal survival. CONCLUSIONS: These findings show that blocking the HGF-Met interaction with systemically given anti-HGF mAb can have profound antitumor effects even within the central nervous system, a site previously believed to be resistant to systemic antibody-based therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2011

c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype

Yunqing Li; Angela Li; Martin Glas; Bachchu Lal; Mingyao Ying; Yingying Sang; Shuli Xia; Daniel Trageser; Hugo Guerrero-Cazares; Charles G. Eberhart; Alfredo Quinones-Hinojosa; Björn Scheffler; John Laterra

The tyrosine kinase c-Met promotes the formation and malignant progression of multiple cancers. It is well known that c-Met hyperactivation increases tumorigenicity and tumor cell resistance to DNA damaging agents, properties associated with tumor-initiating stem cells. However, a link between c-Met signaling and the formation and/or maintenance of neoplastic stem cells has not been previously identified. Here, we show that c-Met is activated and functional in glioblastoma (GBM) neurospheres enriched for glioblastoma tumor-initiating stem cells and that c-Met expression/function correlates with stem cell marker expression and the neoplastic stem cell phenotype in glioblastoma neurospheres and clinical glioblastoma specimens. c-Met activation was found to induce the expression of reprogramming transcription factors (RFs) known to support embryonic stem cells and induce differentiated cells to form pluripotent stem (iPS) cells, and c-Met activation counteracted the effects of forced differentiation in glioblastoma neurospheres. Expression of the reprogramming transcription factor Nanog by glioblastoma cells is shown to mediate the ability of c-Met to induce the stem cell characteristics of neurosphere formation and neurosphere cell self-renewal. These findings show that c-Met enhances the population of glioblastoma stem cells (GBM SCs) via a mechanism requiring Nanog and potentially other c-Met–responsive reprogramming transcription factors.


American Journal of Pathology | 2004

Vascular Gene Expression in Nonneoplastic and Malignant Brain

Stephen L. Madden; Brian P. Cook; Mariana Nacht; William Weber; Michelle Callahan; Yide Jiang; Michael R. Dufault; Xiaoming Zhang; Wen Zhang; Jennifer Walter-Yohrling; Cecile Rouleau; Viatcheslav R. Akmaev; Clarence J. Wang; Xiaohong Cao; Thia St. Martin; Bruce L. Roberts; Beverly A. Teicher; Katherine W. Klinger; Radu V. Stan; Brenden Lucey; Eleanor B. Carson-Walter; John Laterra; Kevin A. Walter

Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression.


Oncogene | 2000

The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3' kinase.

Saijun Fan; Yong Xian Ma; Ji An Wang; Ren Qi Yuan; Qinghui Meng; Yijan Cao; John Laterra; Itzhak D. Goldberg; Eliot M. Rosen

Scatter factor (SF) [aka. hepatocyte growth factor (HGF)] (designated HGF/SF) is a multifunctional cytokine that stimulates tumor cell invasion and angiogenesis. We recently reported that HGF/SF protects epithelial and carcinoma cells against cytotoxicity from DNA-damaging agents and that HGF/SF-mediated cytoprotection was associated with up-regulation of the anti-apoptotic protein Bcl-XL in cells exposed to adriamycin. We now report that in addition to blocking apoptosis, HGF/SF markedly enhances the repair of DNA strand breaks caused by adriamycin or gamma radiation. Constitutive expression of Bcl-XL in MDA-MB-453 breast cancer cells not only simulated the HGF/SF-mediated chemoradioresistance, but also enhanced the repair of DNA strand breaks. The ability of HGF/SF to induce both chemoresistance and DNA repair was inhibited by wortmannin, suggesting that these activities of HGF/SF are due, in part, to a phosphatidylinositol-3′-kinase (PI3K) dependent signaling pathway. Consistent with this finding, HGF/SF induced the phosphorylation of c-Akt (protein kinase-B), a PI3K substrate implicated in apoptosis inhibition; and an expression vector encoding a dominant negative kinase inactive Akt partially but significantly inhibited HGF/SF-mediated cell protection and DNA repair. These findings suggest that HGF/SF activates a cell survival and DNA repair pathway that involves signaling through PI3K and c-Akt and stabilization of the expression of Bcl-XL; and they implicate Bcl-XL in the DNA repair process.


Cancer Research | 2012

Cancer Stem Cells: Distinct Entities or Dynamically Regulated Phenotypes?

Yunqing Li; John Laterra

The origins of tumor-propagating neoplastic stem-like cells [cancer stem cells (CSC)] and their relationship to the bulk population of tumor cells that lack stem-like tumor-propagating features (i.e., transit-amplifying cancer progenitor cells) remain unclear. Recent findings from multiple laboratories show that cancer progenitor cells have the capacity to dedifferentiate and acquire a stem-like phenotype in response to either genetic manipulation or environmental cues. These findings suggest that CSCs and relatively differentiated progenitors coexist in dynamic equilibrium and are subject to bidirectional conversion. In this review, we discuss emerging concepts regarding the stem-like phenotype, its acquisition by cancer progenitor cells, and the molecular mechanisms involved. Understanding the dynamic equilibrium between CSCs and cancer progenitor cells is critical for the development of therapeutic strategies to deplete tumors of their tumor-propagating and treatment-resistant cell subpopulations.

Collaboration


Dive into the John Laterra's collaboration.

Top Co-Authors

Avatar

Bachchu Lal

Kennedy Krieger Institute

View shared research outputs
Top Co-Authors

Avatar

Shuli Xia

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunqing Li

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Mingyao Ying

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge