Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Mousel is active.

Publication


Featured researches published by John Mousel.


International Journal for Numerical Methods in Biomedical Engineering | 2014

Micro-scale blood particulate dynamics using a non-uniform rational B-spline-based isogeometric analysis

V. Chivukula; John Mousel; Jia Lu; Sarah C. Vigmostad

The current research presents a novel method in which blood particulates - biconcave red blood cells (RBCs) and spherical cells are modeled using isogeometric analysis, specifically Non-Uniform Rational B-Splines (NURBS) in 3-D. The use of NURBS ensures that even with a coarse representation, the geometry of the blood particulates maintains an accurate description when subjected to large deformations. The fundamental advantage of this method is the coupling of the geometrical description and the stress analysis of the cell membrane into a single, unified framework. Details on the modeling approach, implementation of boundary conditions and the membrane mechanics analysis using isogeometric modeling are presented, along with validation cases for spherical and biconcave cells. Using NURBS - based isogeometric analysis, the behavior of individual cells in fluid flow is presented and analyzed in different flow regimes using as few as 176 elements for a spherical cell and 220 elements for a biconcave RBC. This work provides a framework for modeling a large number of 3-D deformable biological cells, each with its own geometric description and membrane properties. To the best knowledge of the authors, this is the first application of the NURBS - based isogeometric analysis to model and simulate blood particulates in flow in 3D.


International Journal for Numerical Methods in Biomedical Engineering | 2014

From medical images to flow computations without user‐generated meshes

Seth I. Dillard; John Mousel; Liza Shrestha; Madhavan L. Raghavan; Sarah C. Vigmostad

Biomedical flow computations in patient-specific geometries require integrating image acquisition and processing with fluid flow solvers. Typically, image-based modeling processes involve several steps, such as image segmentation, surface mesh generation, volumetric flow mesh generation, and finally, computational simulation. These steps are performed separately, often using separate pieces of software, and each step requires considerable expertise and investment of time on the part of the user. In this paper, an alternative framework is presented in which the entire image-based modeling process is performed on a Cartesian domain where the image is embedded within the domain as an implicit surface. Thus, the framework circumvents the need for generating surface meshes to fit complex geometries and subsequent creation of body-fitted flow meshes. Cartesian mesh pruning, local mesh refinement, and massive parallelization provide computational efficiency; the image-to-computation techniques adopted are chosen to be suitable for distributed memory architectures. The complete framework is demonstrated with flow calculations computed in two 3D image reconstructions of geometrically dissimilar intracranial aneurysms. The flow calculations are performed on multiprocessor computer architectures and are compared against calculations performed with a standard multistep route.


Journal of Biomechanical Engineering-transactions of The Asme | 2013

A Numerical and Experimental Investigation of the Effect of False Vocal Fold Geometry on Glottal Flow

Mehrdad H. Farahani; John Mousel; Fariborz Alipour; Sarah C. Vigmostad

The false vocal folds are hypothesized to affect the laryngeal flow during phonation. This hypothesis is tested both computationally and experimentally using rigid models of the human larynges. The computations are performed using an incompressible Navier-Stokes solver with a second order, sharp, immersed-boundary formulation, while the experiments are carried out in a wind tunnel with physiologic speeds and dimensions. The computational flow structures are compared with available glottal flow visualizations and are employed to study the vortex dynamics of the glottal flow. Furthermore, pressure data are collected on the surface of the laryngeal models experimentally and computationally. The investigation focuses on three geometric features: the size of the false vocal fold gap; the height between the true and false vocal folds; and the width of the laryngeal ventricle. It is shown that the false vocal fold gap has a significant effect on glottal flow aerodynamics, whereas the second and the third geometric parameters are of lesser importance. The link between pressure distribution on the surface of the larynx and false vocal fold geometry is discussed in the context of vortex evolution in the supraglottal region. It was found that the formation of the starting vortex considerably affects the pressure distribution on the surface of the larynx. The interaction of this vortex structure with false vocal folds creates rebound vortices in the laryngeal ventricle. In the cases of small false vocal fold gap, these rebound vortices are able to reach the true vocal folds during a time period comparable with one cycle of the phonation. Moreover, they can create complex vorticity patterns, which result in significant pressure fluctuations on the surface of the larynx.


Volume 1A, Symposia: Advances in Fluids Engineering Education; Turbomachinery Flow Predictions and Optimization; Applications in CFD; Bio-Inspired Fluid Mechanics; Droplet-Surface Interactions; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES, and Hybrid RANS/LES Methods | 2014

Comparison of Sharp Interface and Smoothed Profile Methods for Laminar Flow Analysis Over Stationary and Moving Boundaries

Fazlolah Mohaghegh; John Mousel; H. S. Udaykumar

This study is a comparison of two techniques for simulation of particulate flows on fixed Cartesian grids: Sharp interface Method (SIM) (Udaykumar et al., 2001, 2002, 2003) and a modified version of Immersed Boundary Method (Peskin, 1977) (IBM) known as Smoothed Profile Method (SPM) (Nakayama and Yamamoto, 2005; Luo et. al, 2009). Different cases were studied includes flow over one or two moving and stationary particles. Predictions of the drag coefficient shows that SPM and SIM are very close to the experiments. SIM slightly under-predicts the value of the drag coefficient while SPM has a small over-estimation. Moreover, SPM is more accurate on coarse grids. However, with refinement of the grid SIM approaches the exact values very fast leading to better results on fine grids. Flow pattern and vortex structures of SPM and SIM are almost the same. Both methods are capable of analyzing the wake flow. Unlike SIM, SPM is able to simulate the flow when two particles are in contact. When two particles are in motion and are very close in a way that the two interfaces overlap, SPM shows a repulsion force between two spheres which reduces the accuracy in comparison with SIM. However, SPM can achieve the collision of two particles without problem.© 2014 ASME


Journal of the Acoustical Society of America | 2014

A high-order Cartesian-grid finite-volume method for aeroacoustics simulations

Mehrdad H. Farahani; John Mousel; Sarah C. Vigmostad

A moving-least-square based finite-volume method is developed to simulate acoustic wave propagation and scattering from complicated solid geometries. This hybrid method solves the linearized perturbed compressible equations as the governing equations of the acoustic field. The solid boundaries are embedded in a uniform Cartesian grid and represented using level set fields. Thus, the current approach avoids unstructured grid generation for the irregular geometries. The desired boundary conditions are imposed sharply on the immersed boundaries using a ghost fluid method. The scope of the implementation of the moving moving-least-square approach in the current solver is threefold: reconstruction of the field variables on cell faces for high-order flux construction, population of the ghost cells based on the desired boundary condition, and filtering the high wave number modes near the immersed boundaries. The computational stencils away from the boundaries are identical; hence, only one moving-least-square shape-function is computed and stored with its underlying grid pattern for all the interior cells. This feature significantly reduces the memory requirement of the acoustic solver compared to similar finite-volume method on irregular unstructured mesh. The acoustic solver is validated against several benchmark problems.


Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions | 2013

A Study on the Effect of False Vocal Folds Gap Size on the Self-Sustained Oscillation of True Vocal Folds

Mehrdad H. Farahani; John Mousel; Sarah C. Vigmostad

Recent studies have shown that the supraglottic structures could alter the aeroacoustics output of the larynx [1–2]. The fist supraglottic tissue above the true vocal folds (TVF) is the false vocal folds (FVF) or ventricular folds. This non-oscillatory part of the human larynx shows a wide range of adductions during the normal phonation. Most previous studies, however, have focused on the effect of normal configuration of the FVFs based on mean values reported for this laryngeal structure. Therefore, the effect of different levels of FVF adduction on oscillation of the TVFs remained uninvestigated.Copyright


Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments | 2013

Image Based Flow Computations Without User Generated Meshes

Seth I. Dillard; John Mousel; Liza Shrestha; Madhavan L. Raghavan; Sarah C. Vigmostad

Medical image processing has emerged as a powerful way to simulate fluid flows through realistic models of complex patient-specific geometries without relying upon simplifying geometric approximations. However, image-based flow modeling processes traditionally involve several steps (e.g. image segmentation, surface mesh generation, volumetric flow mesh generation, and finally computational simulation) that must often be performed using separate pieces of software. This work presents an alternative methodology in which the entire image-based flow modeling process takes place on a Cartesian domain with the image embedded as an implicit surface, circumventing the need for complex surface meshes and body-fitted flow meshes. The complete framework is demonstrated with flow calculations performed in a computed tomography (CT) image reconstruction of an intracranial aneurysm (ICA). Flow calculations are compared against calculations performed following a standard multi-step route using the Vascular Modeling Toolkit (VMTK) [1, 2] and Fluent™ (Ansys, Inc., Lebanon, NH).Copyright


Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments | 2013

Small Scale Flow Structure Evolution During Mechanical Heart Valve Closure

John Mousel; H. S. Udaykumar; K. B. Chandran

Despite half a century of use, mechanical heart valves still require further research to reduce the non-physiologic nature of the flow field, which is the source of potential medical complications, of which the most serious complication is thrombus formation [1]. In the systolic phase of the flow, excessive fluid stresses are generated by the non-physiologic flow patterns [2, 3]. In the closed valve position, a large pressure gradient is imposed across the device which leads to the generation of strong and damaging small-scale leakage flows that entrain platelets such that they are exposed to elevated stresses for excessive time durations [4–6].© 2013 ASME


ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation | 2013

pELAFINT3D: A Unified Approach for Modeling Prosthetic Heart Valves

John Mousel; Sarah C. Vigmostad; H. S. Udaykumar; K. B. Chandran

Cutting edge computational tools are an important component of the future of tasks such as surgical planning of mitral valve repair and the design and evaluation of prosthetic valves. For example, despite half a century of use, mechanical heart valves still require further research to reduce the non-physiologic nature of the flow field, which is the source of potential medical complications, of which the most serious complication is thrombus formation [1]. In fact, there is still a lack of consensus in the literature about which flow pathologies are the most damaging to blood elements [2, 3]. Much computational work has been performed examining the flow around mechanical heart valve devices [4, 5], but because the emphasis has been on correct valve motion and not fine structure detail, only the largest features have been adequately resolved and the forward flow structures are allowed to dissipate on stretched meshes such that the features may not lead to the correct fine structure state as directionality of blood flow changes during the cardiac cycle.© 2013 ASME


21st AIAA Computational Fluid Dynamics Conference | 2013

Effect of Interface Thickness on Smoothed Profile Modeling of Flow Over a Stationary Sphere in 1<Re<300

Fazlolah Mohaghegh; John Mousel; Uday Kumar

Smoothed Profile Modeling (SPM) of flow over a stationary sphere has been studied to find the efficiency of the method in flows with steady wakes. It is shown that the interface between the solid and liquid affects the fluid-solid interaction and thus should be known before using SPM. A correlation for drag coefficient of stationary sphere is used to find the proper values of interface thickness parameter in order to capture the correct drag coefficient. The correlation is based on Reynolds number and grid size and it is validated to lead to similar flow patterns with the Sharp Interface Method (SIM). Numerical experiments revealed that SPM can have more accurate results that SIM for the coarse grids.

Collaboration


Dive into the John Mousel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge