Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johnathan Cooper-Knock is active.

Publication


Featured researches published by Johnathan Cooper-Knock.


Brain | 2012

Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72

Johnathan Cooper-Knock; Christopher Hewitt; J. Robin Highley; Alice Brockington; Antonio Milano; Somai Man; Joanne Martindale; Judith Hartley; Theresa Walsh; Catherine Gelsthorpe; Lynne Baxter; G. Forster; Melanie Fox; Joanna J. Bury; Kin Mok; Christopher J McDermott; Bryan J. Traynor; Janine Kirby; Stephen B. Wharton; John Hardy; Pamela J. Shaw

Intronic expansion of the GGGGCC hexanucleotide repeat within the C9ORF72 gene causes frontotemporal dementia and amyotrophic lateral sclerosis/motor neuron disease in both familial and sporadic cases. Initial reports indicate that this variant within the frontotemporal dementia/amyotrophic lateral sclerosis spectrum is associated with transactive response DNA binding protein (TDP-43) proteinopathy. The amyotrophic lateral sclerosis/motor neuron disease phenotype is not yet well characterized. We report the clinical and pathological phenotypes associated with pathogenic C9ORF72 mutations in a cohort of 563 cases from Northern England, including 63 with a family history of amyotrophic lateral sclerosis. One hundred and fifty-eight cases from the cohort (21 familial, 137 sporadic) were post-mortem brain and spinal cord donors. We screened DNA for the C9ORF72 mutation, reviewed clinical case histories and undertook pathological evaluation of brain and spinal cord. Control DNA samples (n = 361) from the same population were also screened. The C9ORF72 intronic expansion was present in 62 cases [11% of the cohort; 27/63 (43%) familial, 35/500 (7%) cases with sporadic amyotrophic lateral sclerosis/motor neuron disease]. Disease duration was significantly shorter in cases with C9ORF72-related amyotrophic lateral sclerosis (30.5 months) compared with non-C9ORF72 amyotrophic lateral sclerosis/motor neuron disease (36.3 months, P < 0.05). C9ORF72 cases included both limb and bulbar onset disease and all cases showed combined upper and lower motor neuron degeneration (amyotrophic lateral sclerosis). Thus, clinically, C9ORF72 cases show the features of a relatively rapidly progressive, but otherwise typical, variant of amyotrophic lateral sclerosis associated with both familial and sporadic presentations. Dementia was present in the patient or a close family member in 22/62 cases with C9ORF72 mutation (35%) based on diagnoses established from retrospective clinical case note review that may underestimate significant cognitive changes in late disease. All the C9ORF72 mutation cases showed classical amyotrophic lateral sclerosis pathology with TDP-43 inclusions in spinal motor neurons. Neuronal cytoplasmic inclusions and glial inclusions positive for p62 immunostaining in non-motor regions were strongly over-represented in the C9ORF72 cases. Extra-motor pathology in the frontal cortex (P < 0.0005) and the hippocampal CA4 subfield neurons (P < 0.0005) discriminated C9ORF72 cases strongly from the rest of the cohort. Inclusions in CA4 neurons were not present in non-C9ORF72 cases, indicating that this pathology predicts mutation status.


Nature Reviews Neurology | 2012

Gene expression profiling in human neurodegenerative disease.

Johnathan Cooper-Knock; Janine Kirby; Laura Ferraiuolo; Paul R. Heath; Magnus Rattray; Pamela J. Shaw

Transcriptome study in neurodegenerative disease has advanced considerably in the past 5 years. Increasing scientific rigour and improved analytical tools have led to more-reproducible data. Many transcriptome analysis platforms assay the expression of the entire genome, enabling a complete biological context to be captured. Gene expression profiling (GEP) is, therefore, uniquely placed to discover pathways of disease pathogenesis, potential therapeutic targets, and biomarkers. This Review summarizes microarray human GEP studies in the common neurodegenerative diseases amyotrophic lateral sclerosis (ALS), Parkinson disease (PD) and Alzheimer disease (AD). Several interesting reports have compared pathological gene expression in different patient groups, disease stages and anatomical areas. In all three diseases, GEP has revealed dysregulation of genes related to neuroinflammation. In ALS and PD, gene expression related to RNA splicing and protein turnover is disrupted, and several studies in ALS support involvement of the cytoskeleton. GEP studies have implicated the ubiquitin–proteasome system in PD pathogenesis, and have provided evidence of mitochondrial dysfunction in PD and AD. Lastly, in AD, a possible role for dysregulation of intracellular signalling pathways, including calcium signalling, has been highlighted. This Review also provides a discussion of methodological considerations in microarray sample preparation and data analysis.


Brain | 2014

Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions

Johnathan Cooper-Knock; Matthew J. Walsh; Adrian Higginbottom; J. Robin Highley; Mark J. Dickman; Dieter Edbauer; Stephen B. Wharton; Stuart A. Wilson; Janine Kirby; Guillaume M. Hautbergue; Pamela J. Shaw

Expansion of GGGGCC repeats in C9orf72 causes familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but the underlying mechanism is unclear. Using RNA pulldown and immunohistochemistry in ALS biosamples, Cooper-Knock et al. identify proteins that bind to the repeat expansions. Disrupted RNA splicing and/or nuclear export may underlie C9orf72-ALS pathogenesis.


Acta Neuropathologica | 2014

The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype

Johnathan Cooper-Knock; Pamela J. Shaw; Janine Kirby

The GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common cause of familial amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTLD) and ALS–FTLD, as well as contributing to sporadic forms of these diseases. Screening of large cohorts of ALS and FTLD cohorts has identified that C9ORF72-ALS is represented throughout the clinical spectrum of ALS phenotypes, though in comparison with other genetic subtypes, C9ORF72 carriers have a higher incidence of bulbar onset disease. In contrast, C9ORF72-FTLD is predominantly associated with behavioural variant FTD, which often presents with psychosis, most commonly in the form of hallucinations and delusions. However, C9ORF72 expansions are not restricted to these clinical phenotypes. There is a higher than expected incidence of parkinsonism in ALS patients with C9ORF72 expansions, and the G4C2 repeat has also been reported in other motor phenotypes, such as primary lateral sclerosis, progressive muscular atrophy, corticobasal syndrome and Huntington-like disorders. In addition, the expansion has been identified in non-motor phenotypes including Alzheimer’s disease and Lewy body dementia. It is not currently understood what is the basis of the clinical variation seen with the G4C2 repeat expansion. One potential explanation is repeat length. Sizing of the expansion by Southern blotting has established that there is somatic heterogeneity, with different expansion lengths in different tissues, even within the brain. To date, no correlation with expansion size and clinical phenotype has been established in ALS, whilst in FTLD only repeat size in the cerebellum was found to correlate with disease duration. Somatic heterogeneity suggests there is a degree of instability within the repeat and evidence of anticipation has been reported with reducing age of onset in subsequent generations. This variability/instability in expansion length, along with its interactions with environmental and genetic modifiers, such as TMEM106B, may be the basis of the differing clinical phenotypes arising from the mutation.


PLOS ONE | 2015

C9ORF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis.

Johnathan Cooper-Knock; Joanna J. Bury; Paul R. Heath; Matthew Wyles; Adrian Higginbottom; Catherine Gelsthorpe; J. Robin Highley; Guillaume M. Hautbergue; Magnus Rattray; Janine Kirby; Pamela J. Shaw

Objective An intronic GGGGCC-repeat expansion of C9ORF72 is the most common genetic variant of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The mechanism of neurodegeneration is unknown, but a direct effect on RNA processing mediated by RNA foci transcribed from the repeat sequence has been proposed. Methods Gene expression profiling utilised total RNA extracted from motor neurons and lymphoblastoid cell lines derived from human ALS patients, including those with an expansion of C9ORF72, and controls. In lymphoblastoid cell lines, expansion length and the frequency of sense and antisense RNA foci was also examined. Results Gene level analysis revealed a number of differentially expressed networks and both cell types exhibited dysregulation of a network functionally enriched for genes encoding ‘RNA splicing’ proteins. There was a significant overlap of these genes with an independently generated list of GGGGCC-repeat protein binding partners. At the exon level, in lymphoblastoid cells derived from C9ORF72-ALS patients splicing consistency was lower than in lines derived from non-C9ORF72 ALS patients or controls; furthermore splicing consistency was lower in samples derived from patients with faster disease progression. Frequency of sense RNA foci showed a trend towards being higher in lymphoblastoid cells derived from patients with shorter survival, but there was no detectable correlation between disease severity and DNA expansion length. Significance Up-regulation of genes encoding predicted binding partners of the C9ORF72 expansion is consistent with an attempted compensation for sequestration of these proteins. A number of studies have analysed changes in the transcriptome caused by C9ORF72 expansion, but to date findings have been inconsistent. As a potential explanation we suggest that dynamic sequestration of RNA processing proteins by RNA foci might lead to a loss of splicing consistency; indeed in our samples measurement of splicing consistency correlates with disease severity.


Molecular Neurodegeneration | 2013

Simultaneous and independent detection of C9ORF72 alleles with low and high number of GGGGCC repeats using an optimised protocol of Southern blot hybridisation

Vladimir L. Buchman; Johnathan Cooper-Knock; Natalie Connor-Robson; Adrian Higginbottom; Janine Kirby; O. D. Razinskaya; Natalia Ninkina; Pamela J. Shaw

BackgroundSizing of GGGGCC hexanucleotide repeat expansions within the C9ORF72 locus, which account for approximately 10% of all amyotrophic lateral sclerosis (ALS) cases, is urgently required to answer fundamental questions about mechanisms of pathogenesis in this important genetic variant. Currently employed PCR protocols are limited to discrimination between the presence and absence of a modified allele with more than 30 copies of the repeat, while Southern hybridisation-based methods are confounded by the somatic heterogeneity commonly present in blood samples, which might cause false-negative or ambiguous results.ResultsWe describe an optimised Southern hybridisation-based protocol that allows confident detection of the presence of a C9ORF72 repeat expansion alongside independent assessment of its heterogeneity and the number of repeat units. The protocol can be used with either a radiolabeled or non-radiolabeled probe. Using this method we have successfully sized the C9ORF72 repeat expansion in lymphoblastoid cells, peripheral blood, and post-mortem central nervous system (CNS) tissue from ALS patients. It was also possible to confidently demonstrate the presence of repeat expansion, although of different magnitude, in both C9ORF72 alleles of the genome of one patient.ConclusionsThe suggested protocol has sufficient advantages to warrant adoption as a standard for Southern blot hybridisation analysis of GGGGCC repeat expansions in the C9ORF72 locus.


Neurology | 2013

C9ORF72 expansions, parkinsonism, and Parkinson disease A clinicopathologic study

Johnathan Cooper-Knock; A Frolov; Highley; Gavin Charlesworth; Janine Kirby; Antonio Milano; Judith Hartley; P.G. Ince; Christopher J McDermott; Tammaryn Lashley; Tamas Revesz; Pamela J. Shaw; Nicholas W. Wood; Oliver Bandmann

Objective: To determine the histopathologic bases for the observed incidence of parkinsonism in families with C9ORF72 expansions, which typically cause amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia. Methods: DNA was extracted from 377 brains with the histopathologic diagnosis of idiopathic Parkinson disease or related disorders and analyzed for C9ORF72 expansions. α-Synuclein and p62 immunohistochemistry of the substantia nigra (SN) was undertaken in brains of 17 ALS cases with (C9ORF72+) and 51 without (C9ORF72−) the C9ORF72 expansion. Results: Only 1 of 338 cases with pathologically confirmed idiopathic Parkinson disease had a C9ORF72 expansion. Similarly, only 1 of 17 C9ORF72+ brains displayed features suggestive of α-synucleinopathy. In contrast, p62-positive, TDP-43–negative neuronal cytoplasmic inclusions within the SN were considerably more frequent in C9ORF72+ brain tissue than in the C9ORF72− brains (p = 0.005). Furthermore, there was a more marked loss of dopaminergic neurons in the SN of C9ORF72+ ALS brains than C9ORF72− ALS brains (p = 0.029). Conclusions: SN involvement is common in C9ORF72+ ALS but can be clearly distinguished from Parkinson disease–related mechanisms by the presence of p62-positive inclusions and the absence of α-synuclein–positive Lewy bodies or Lewy neurites.


Journal of Neurology, Neurosurgery, and Psychiatry | 2013

Concurrence of multiple sclerosis and amyotrophic lateral sclerosis in patients with hexanucleotide repeat expansions of C9ORF72

Azza Ismail; Johnathan Cooper-Knock; J. Robin Highley; Antonio Milano; Janine Kirby; Emily F. Goodall; James Lowe; Ian Scott; Cris S. Constantinescu; Stephen J. Walters; Sian Price; Christopher J McDermott; Stephen Sawcer; D Alastair S Compston; Basil Sharrack; Pamela J. Shaw

Background Crossover in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) has been described but is poorly understood. A GGGGCC hexanucleotide repeat expansion of C9ORF72 has recently been identified in a significant proportion of patients with ALS. Methods In approximately 650 patients diagnosed with ALS from the North of England we identified seven patients who initially presented with MS. DNA obtained from five patients with MS-ALS and 215 patients with MS alone was screened for the C9ORF72 expansion. Post-mortem material was examined from two patients with MS-ALS. Gene expression profiling was performed on lymphoblastoid cells and levels of CXCL10 were measured in cerebrospinal fluid (CSF) from patients with ALS with and without the C9ORF72 expansion and controls. Results Concurrence of MS and ALS is higher than expected in our population. The C9ORF72 expansion was identified in 80% of patients with MS-ALS but not in those with MS alone. In the presence of preceding MS, C9ORF72-ALS was more rapidly progressive. MetaCore analysis identified alteration of the NF-кB pathway in C9ORF72-ALS and non-C9ORF72-ALS. NF-кB activation is associated with increased expression of the neuroprotective cytokine CXCL10 but, in C9ORF72-ALS, CXCL10 is downregulated and CSF levels are reduced. Conclusions We propose that MS-associated neuroinflammation may affect penetrance and progression of the C9ORF72 expansion. In particular, the NF-кB pathway is activated in MS and appears to be dysfunctional in C9ORF72-ALS. Aberrant downregulation of CXCL10 may explain the predisposition of C9ORF72 expansion carriers to develop ALS in the context of MS and NF-кB activation, and offers a potential therapeutic target.


Neuropathology and Applied Neurobiology | 2014

Loss of nuclear TDP‐43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones

J. Robin Highley; Janine Kirby; Joeri A. Jansweijer; Philip Webb; Channa Hewamadduma; Paul R. Heath; Adrian Higginbottom; Rohini Raman; Laura Ferraiuolo; Johnathan Cooper-Knock; Christopher J McDermott; Stephen B. Wharton; Pamela J. Shaw

Loss of nuclear TDP‐43 characterizes sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP‐43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether (1) RNA splicing dysregulation is present in lower motor neurones in ALS and in a motor neurone‐like cell model; and (2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient‐derived fibroblasts.


Neuropathology and Applied Neurobiology | 2015

Invited Review: Decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art

Matthew J. Walsh; Johnathan Cooper-Knock; Jennifer E. Dodd; Matthew J. Stopford; Simeon R. Mihaylov; Janine Kirby; Pamela J. Shaw; Guillaume M. Hautbergue

Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain‐of‐function and/or protein loss‐of‐function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat‐associated non‐ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntingtons disease, spinocerebellar ataxias, C9ORF72‐related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins – and how these lead to neurodegeneration – remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression.

Collaboration


Dive into the Johnathan Cooper-Knock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janine Kirby

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge