Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul R. Heath is active.

Publication


Featured researches published by Paul R. Heath.


Nature Biotechnology | 2007

Adaptation to culture of human embryonic stem cells and oncogenesis in vivo

Duncan Baker; Neil J. Harrison; Edna Maltby; Kath Smith; Harry Moore; Pamela J. Shaw; Paul R. Heath; Hazel Holden; Peter W. Andrews

The application of human embryonic stem cells (HESCs) to provide differentiated cells for regenerative medicine will require the continuous maintenance of the undifferentiated stem cells for long periods in culture. However, chromosomal stability during extended passaging cannot be guaranteed, as recent cytogenetic studies of HESCs have shown karyotypic aberrations. The observed karyotypic aberrations probably reflect the progressive adaptation of self-renewing cells to their culture conditions. Genetic change that increases the capacity of cells to proliferate has obvious parallels with malignant transformation, and we propose that the changes observed in HESCs in culture reflect tumorigenic events that occur in vivo, particularly in testicular germ cell tumors. Further supporting a link between culture adaptation and malignancy, we have observed the formation of a chromosomal homogeneous staining region in one HESC line, a genetic feature almost a hallmark of cancer cells. Identifying the genes critical for culture adaptation may thus reveal key players for both stem cell maintenance in vitro and germ cell tumorigenesis in vivo.


Neuroscience Letters | 1995

The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies : selective mRNA vulnerability and comparison with their encoded proteins

Paul J. Harrison; Paul R. Heath; Sharon L. Eastwood; P.W.J. Burnet; Brendan McDonald; R.C.A. Pearson

To help account for the variable quality and quantity of RNA in human brain, we have studied the effect of premortem (agonal state) and postmortem factors on the detection of poly(A)+mRNA and eight mRNAs. For comparison, the influence of the same factors upon gene products encoded by the mRNAs was studied immunocytochemically or by receptor autoradiography. Brain pH declined with increasing age at death and was related to agonal state severity, but was independent of postmortem interval and the histological presence of hypoxic changes. By linear regression, pH was significantly associated with the abundance of several of the RNAs, but not with poly(A)+mRNA, immunoreactivities, or binding site densities. Postmortem interval had a limited influence upon mRNA and protein products. Freezer storage time showed no effect. Parallel rat brain studies showed no relationship between postmortem interval (0-48 h) and amounts of total RNA, poly(A)+RNA, or two individual mRNAs; however, RNA content was reduced by 40% at 96 h after death. pH is superior to clinical assessments of agonal state or mode of death in predicting mRNA preservation. It provides a simple means to improve human brain gene expression studies. pH is stable after death and during freezer storage and can be measured either in cerebrospinal fluid or in homogenised tissue.


Muscle & Nerve | 2002

Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis.

Paul R. Heath; Pamela J. Shaw

Excitotoxicity may play a role in certain disorders of the motor system thought to be caused by environmentally acquired toxins, including lathyrism and domoic acid poisoning. Motor neurons appear to be particularly susceptible to toxicity mediated via α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole propionic acid (AMPA)–kainate receptors. There is a body of evidence implicating glutamatergic toxicity as a contributory factor in the selective neuronal injury occurring in amyotrophic lateral sclerosis (ALS). Interference with glutamate‐mediated toxicity is so far the only neuroprotective therapeutic strategy that has shown benefit in terms of slowing disease progression in ALS patients. Biochemical studies have shown decreased glutamate levels in central nervous system (CNS) tissue and increased levels in the cerebrospinal fluid (CSF) of ALS patients. CSF from ALS patients is toxic to neurons in culture, apparently via a mechanism involving AMPA receptor activation. There is evidence for altered expression and function of glial glutamate transporters in ALS, particularly excitatory amino acid transporter 2 (EAAT2). Abnormal splice variants of EAAT2 have been detected in human CNS. Mitochondrial dysfunction may contribute to excitotoxicity in ALS. Induction of neuronal nitric oxide synthase and cyclooxygenase 2 in ALS may also lead to significant interactions with regulation of the glutamate transmitter system. Certain features of motor neurons may predispose them to the neurodegenerative process in ALS, such as the cell size, mitochondrial activity, neurofilament content, and relative lack of certain calcium‐binding proteins and molecular chaperones. Motor neurons appear vulnerable to toxicity mediated by calcium‐permeable AMPA receptors. The relatively low expression of the glutamate receptor 2 (GluR2) AMPA receptor subunit and the high current density caused by the large number and density of cell surface AMPA receptors are potentially important factors that may predispose to such toxicity.


The Journal of Neuroscience | 2007

Microarray Analysis of the Cellular Pathways Involved in the Adaptation to and Progression of Motor Neuron Injury in the SOD1 G93A Mouse Model of Familial ALS

Laura Ferraiuolo; Paul R. Heath; Hazel Holden; Paul R. Kasher; Janine Kirby; Pamela J. Shaw

The cellular pathways of motor neuronal injury have been investigated in the SOD1 G93A murine model of familial amyotrophic lateral sclerosis (ALS) using laser-capture microdissection and microarray analysis. The advantages of this study include the following: analysis of changes specifically in motor neurons (MNs), while still detecting effects of interactions with neighboring cells; the ability to profile changes during disease progression, an approach not possible in human ALS; and the use of transgenic mice bred on a homogeneous genetic background, eliminating the confounding effects arising from a mixed genetic background. By using this rigorous approach, novel changes in key cellular pathways have been detected at both the presymptomatic and late stages, which have been validated by quantitative reverse transcription-PCR. At the presymptomatic stage (60 d), MNs extracted from SOD1 G93A mice show a significant increase in expression of genes subserving both transcriptional and translational functions, as well as lipid and carbohydrate metabolism, mitochondrial preprotein translocation, and respiratory chain function, suggesting activation of a strong cellular adaptive response. Mice 90 d old still show upregulation of genes involved in carbohydrate metabolism, whereas transcription and mRNA processing genes begin to show downregulation. Late in the disease course (120 d), important findings include the following: marked transcriptional repression, with downregulation of multiple transcripts involved in transcriptional and metabolic functions; upregulation of complement system components; and increased expression of key cyclins involved in cell-cycle regulation. The changes described in the motor neuron transcriptome evolving during the disease course highlight potential novel targets for neuroprotective therapeutic intervention.


PLOS ONE | 2010

Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS)

Laura E. Cox; Laura Ferraiuolo; Emily F. Goodall; Paul R. Heath; Adrian Higginbottom; Heather Mortiboys; Hannah Hollinger; Judith Hartley; Alice Brockington; Christine E. Burness; Karen E. Morrison; Stephen B. Wharton; Andrew J. Grierson; Janine Kirby; Pamela J. Shaw

Background Amyotrophic lateral sclerosis (ALS), a common late-onset neurodegenerative disease, is associated with fronto-temporal dementia (FTD) in 3–10% of patients. A mutation in CHMP2B was recently identified in a Danish pedigree with autosomal dominant FTD. Subsequently, two unrelated patients with familial ALS, one of whom also showed features of FTD, were shown to carry missense mutations in CHMP2B. The initial aim of this study was to determine whether mutations in CHMP2B contribute more broadly to ALS pathogenesis. Methodology/Principal Findings Sequencing of CHMP2B in 433 ALS cases from the North of England identified 4 cases carrying 3 missense mutations, including one novel mutation, p.Thr104Asn, none of which were present in 500 neurologically normal controls. Analysis of clinical and neuropathological data of these 4 cases showed a phenotype consistent with the lower motor neuron predominant (progressive muscular atrophy (PMA)) variant of ALS. Only one had a recognised family history of ALS and none had clinically apparent dementia. Microarray analysis of motor neurons from CHMP2B cases, compared to controls, showed a distinct gene expression signature with significant differential expression predicting disassembly of cell structure; increased calcium concentration in the ER lumen; decrease in the availability of ATP; down-regulation of the classical and p38 MAPK signalling pathways, reduction in autophagy initiation and a global repression of translation. Transfection of mutant CHMP2B into HEK-293 and COS-7 cells resulted in the formation of large cytoplasmic vacuoles, aberrant lysosomal localisation demonstrated by CD63 staining and impairment of autophagy indicated by increased levels of LC3-II protein. These changes were absent in control cells transfected with wild-type CHMP2B. Conclusions/Significance We conclude that in a population drawn from North of England pathogenic CHMP2B mutations are found in approximately 1% of cases of ALS and 10% of those with lower motor neuron predominant ALS. We provide a body of evidence indicating the likely pathogenicity of the reported gene alterations. However, absolute confirmation of pathogenicity requires further evidence, including documentation of familial transmission in ALS pedigrees which might be most fruitfully explored in cases with a LMN predominant phenotype.


Nature Reviews Neurology | 2012

Gene expression profiling in human neurodegenerative disease.

Johnathan Cooper-Knock; Janine Kirby; Laura Ferraiuolo; Paul R. Heath; Magnus Rattray; Pamela J. Shaw

Transcriptome study in neurodegenerative disease has advanced considerably in the past 5 years. Increasing scientific rigour and improved analytical tools have led to more-reproducible data. Many transcriptome analysis platforms assay the expression of the entire genome, enabling a complete biological context to be captured. Gene expression profiling (GEP) is, therefore, uniquely placed to discover pathways of disease pathogenesis, potential therapeutic targets, and biomarkers. This Review summarizes microarray human GEP studies in the common neurodegenerative diseases amyotrophic lateral sclerosis (ALS), Parkinson disease (PD) and Alzheimer disease (AD). Several interesting reports have compared pathological gene expression in different patient groups, disease stages and anatomical areas. In all three diseases, GEP has revealed dysregulation of genes related to neuroinflammation. In ALS and PD, gene expression related to RNA splicing and protein turnover is disrupted, and several studies in ALS support involvement of the cytoskeleton. GEP studies have implicated the ubiquitin–proteasome system in PD pathogenesis, and have provided evidence of mitochondrial dysfunction in PD and AD. Lastly, in AD, a possible role for dysregulation of intracellular signalling pathways, including calcium signalling, has been highlighted. This Review also provides a discussion of methodological considerations in microarray sample preparation and data analysis.


Neurobiology of Aging | 2011

Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer's pathology and APOE genotype

Julie E. Simpson; Pamela J. Shaw; Paul R. Heath; Rohini Raman; Claire J. Garwood; Catherine Gelsthorpe; Lynne Baxter; G. Forster; Fiona E. Matthews; Carol Brayne; Stephen B. Wharton

Astrocytes contribute to a variety of functions in the brain, including homeostasis, synapse formation, plasticity, and metabolism. Astrocyte dysfunction may disrupt their normal role, including neuronal support, thereby contributing to neurodegenerative pathologies, including Alzheimers disease (AD). To understand the role of astrocytes in the pathogenesis of age-related disorders, we isolated astrocytes by laser capture microdissection, using glial fibrillary acidic protein (GFAP) as a marker, and characterized the astrocyte transcriptome at different Braak neurofibrillary tangle stages in postmortem temporal cortex samples derived from the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) cohort, using microarray analysis. The largest number of significant, differentially expressed genes were identified when the expression profile of astrocytes from isocortical stages of neurofibrillary tangle pathology (Braak stages V-VI) were compared with entorhinal stages (Braak stages I-II). Dysregulation of genes associated with the actin cytoskeleton, proliferation, apoptosis, and ubiquitin-mediated proteolysis occurred at low Braak stages, while altered regulation of intracellular signaling pathways, including insulin, phosphatidylinositol 3-kinase (PI3K)/Akt, and mitogen-activated protein kinase (MAPK) pathways were primarily associated with high levels of Alzheimer-type pathology, and occurred at lower Braak stages in individuals with the APOEε4 allele. Our findings implicate astrocyte dysfunction in the pathogenesis of neurodegenerative pathology in the aging brain, and provide a basis for future candidate studies based on specific pathways.


Frontiers in Cellular Neuroscience | 2013

Neuronal dark matter: the emerging role of microRNAs in neurodegeneration

Emily F. Goodall; Paul R. Heath; Oliver Bandmann; Janine Kirby; Pamela J. Shaw

MicroRNAs (miRNAs) are small, abundant RNA molecules that constitute part of the cells non-coding RNA “dark matter.” In recent years, the discovery of miRNAs has revolutionised the traditional view of gene expression and our understanding of miRNA biogenesis and function has expanded. Altered expression of miRNAs is increasingly recognized as a feature of many disease states, including neurodegeneration. Here, we review the emerging role for miRNA dysfunction in Alzheimers disease, Parkinsons disease, amyotrophic lateral sclerosis (ALS) and Huntingtons disease pathogenesis. We emphasize the complex nature of gene regulatory networks and the need for systematic studies, with larger sample cohorts than have so far been reported, to reveal the most important miRNA regulators in disease. Finally, miRNA diversity and their potential to target multiple pathways, offers novel clinical applications for miRNAs as biomarkers and therapeutic agents in neurodegenerative diseases.


Brain | 2011

Dysregulation of astrocyte–motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis

Laura Ferraiuolo; Adrian Higginbottom; Paul R. Heath; Sian Barber; David Greenald; Janine Kirby; Pamela J. Shaw

Amyotrophic lateral sclerosis is a neurodegenerative disease in which death of motoneurons leads to progressive failure of the neuromuscular system resulting in death frequently within 2-3 years of symptom onset. Focal onset and propagation of the disease symptoms to contiguous motoneuron groups is a striking feature of the human disease progression. Recent work, using mutant superoxide dismutase 1 murine models and in vitro culture systems has indicated that astrocytes are likely to contribute to the propagation of motoneuron injury and disease progression. However, the basis of this astrocyte toxicity and/or failure of motoneuron support has remained uncertain. Using a combination of in vivo and in vitro model systems of superoxide dismutase 1-related amyotrophic lateral sclerosis, linked back to human biosamples, we set out to elucidate how astrocyte properties change in the presence of mutant superoxide dismutase 1 to contribute to motoneuron injury. Gene expression profiling of spinal cord astrocytes from presymptomatic transgenic mice expressing mutant superoxide dismutase 1 revealed two striking changes. First, there was evidence of metabolic dysregulation and, in particular, impairment of the astrocyte lactate efflux transporter, with resultant decrease of spinal cord lactate levels. Second, there was evidence of increased nerve growth factor production and dysregulation of the ratio of pro-nerve growth factor to mature nerve growth factor, favouring p75 receptor expression and activation by neighbouring motoneurons. Functional in vitro studies showed that astrocytes expressing mutant superoxide dismutase 1 are toxic to normal motoneurons. We provide evidence that reduced metabolic support from lactate release and activation of pro-nerve growth factor-p75 receptor signalling are key components of this toxicity. Preservation of motoneuron viability could be achieved by increasing lactate provision to motoneurons, depletion of increased pro-nerve growth factor levels or p75 receptor blockade. These findings are likely to be relevant to human amyotrophic lateral sclerosis, where we have demonstrated increased levels of pro-nerve growth factor in cerebrospinal fluid and increased expression of the p75 receptor by spinal motoneurons. Taken together, these data confirm that altered properties of astrocytes are likely to play a crucial role in the propagation of motoneuron injury in superoxide dismutase 1-related amyotrophic lateral sclerosis and indicate that manipulation of the energy supply to motoneurons as well as inhibition of p75 receptor signalling may represent valuable neuroprotective strategies.


Glia | 2014

Alpha‐synuclein mRNA expression in oligodendrocytes in MSA

Yt Asi; Julie E. Simpson; Paul R. Heath; Stephen B. Wharton; Andrew J. Lees; Tamas Revesz; Henry Houlden; Janice L. Holton

Multiple system atrophy (MSA) is a progressive neurodegenerative disease presenting clinically with parkinsonian, cerebellar, and autonomic features. α‐Synuclein (αsyn), encoded by the gene SNCA, is the main constituent of glial cytoplasmic inclusion (GCI) found in oligodendrocytes in MSA, but the methods of its accumulation have not been established. The aim of this study is to investigate alterations in regional and cellular SNCA mRNA expression in MSA as a possible substrate for GCI formation. Quantitative reverse transcription polymerase chain reaction (qPCR) was performed on postmortem brain samples from 15 MSA, 5 IPD, and 5 control cases to investigate regional expression in the frontal and occipital regions, dorsal putamen, pontine base, and cerebellum. For cellular expression analysis, neurons and oligodendrocytes were isolated by laser‐capture microdissection from five MSA and five control cases. SNCA mRNA expression was not significantly different between the MSA, IPD and control cases in all regions (multilevel model, P = 0.14). After adjusting for group effect, the highest expression was found in the occipital cortex while the lowest was in the putamen (multilevel model, P < 0.0001). At the cellular level, MSA oligodendrocytes expressed more SNCA than control oligodendrocytes and expression in MSA neurons was slightly lower than that in controls, however, these results did not reach statistical significance. We have demonstrated regional variations in SNCA expression, which is higher in cortical than subcortical regions. This study is the first to demonstrate SNCA mRNA expression by oligodendrocytes in human postmortem tissue using qPCR and, although not statistically significant, could suggest that this may be increased in MSA compared to controls. GLIA 2014;62:964–970

Collaboration


Dive into the Paul R. Heath's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janine Kirby

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol Brayne

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Hazel Holden

University of Sheffield

View shared research outputs
Researchain Logo
Decentralizing Knowledge