Jolene K. Diedrich
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jolene K. Diedrich.
Nature | 2013
Keiji Okamoto; Cristina Bartocci; Iliana Ouzounov; Jolene K. Diedrich; John R. Yates; Eros Lazzerini Denchi
Mammalian telomeres repress DNA-damage activation at natural chromosome ends by recruiting specific inhibitors of the DNA-damage machinery that form a protective complex termed shelterin. Within this complex, TRF2 (also known as TERF2) has a crucial role in end protection through the suppression of ATM activation and the formation of end-to-end chromosome fusions. Here we address the molecular properties of TRF2 that are both necessary and sufficient to protect chromosome ends in mouse embryonic fibroblasts. Our data support a two-step mechanism for TRF2-mediated end protection. First, the dimerization domain of TRF2 is required to inhibit ATM activation, the key initial step involved in the activation of a DNA-damage response (DDR). Next, TRF2 independently suppresses the propagation of DNA-damage signalling downstream of ATM activation. This novel modulation of the DDR at telomeres occurs at the level of the E3 ubiquitin ligase RNF168 (ref. 3). Inhibition of RNF168 at telomeres involves the deubiquitinating enzyme BRCC3 and the ubiquitin ligase UBR5, and is sufficient to suppress chromosome end-to-end fusions. This two-step mechanism for TRF2-mediated end protection helps to explain the apparent paradox of frequent localization of DDR proteins at functional telomeres without concurrent induction of detrimental DNA-repair activities.
Journal of Proteomics | 2015
Tao Xu; Sung Kyu Robin Park; John D. Venable; James A. Wohlschlegel; Jolene K. Diedrich; Daniel Cociorva; Bingwen Lu; Liang Liao; Johannes A. Hewel; Xuemei Han; Catherine C. L. Wong; Bryan R. Fonslow; Claire Delahunty; Y. Gao; H. Shah; John R. Yates
ProLuCID, a new algorithm for peptide identification using tandem mass spectrometry and protein sequence databases has been developed. This algorithm uses a three tier scoring scheme. First, a binomial probability is used as a preliminary scoring scheme to select candidate peptides. The binomial probability scores generated by ProLuCID minimize molecular weight bias and are independent of database size. A modified cross-correlation score is calculated for each candidate peptide identified by the binomial probability. This cross-correlation scoring function models the isotopic distributions of fragment ions of candidate peptides which ultimately results in higher sensitivity and specificity than that obtained with the SEQUEST XCorr. Finally, ProLuCID uses the distribution of XCorr values for all of the selected candidate peptides to compute a Z score for the peptide hit with the highest XCorr. The ProLuCID Z score combines the discriminative power of XCorr and DeltaCN, the standard parameters for assessing the quality of the peptide identification using SEQUEST, and displays significant improvement in specificity over ProLuCID XCorr alone. ProLuCID is also able to take advantage of high resolution MS/MS spectra leading to further improvements in specificity when compared to low resolution tandem MS data. A comparison of filtered data searched with SEQUEST and ProLuCID using the same false discovery rate as estimated by a target-decoy database strategy, shows that ProLuCID was able to identify as many as 25% more proteins than SEQUEST. ProLuCID is implemented in Java and can be easily installed on a single computer or a computer cluster. This article is part of a Special Issue entitled: Computational Proteomics.
Analytical Chemistry | 2011
Arun Agarwal; Jolene K. Diedrich; Ryan R. Julian
Disulfide bonds stabilize the tertiary and quaternary structure of proteins. Identifying the correct disulfide bond pairs can be extremely useful to understand the nature of a protein. However identifying correct disulfide linkages remains a challenge for many proteins. We report the use of ultraviolet photodissociation (UVPD) at 266 nm to selectively cleave disulfide bonds in the gas phase, while leaving all other bonds intact. This methodology can be used to identify disulfide bonded pairs in complex systems with multiple disulfide bond partners. We have explored UVPD chemistry on pairs of model peptides with one disulfide bond to evaluate the importance of various sequence and structural effects. In addition, online experiments were performed on whole protein digests. Bond selective UVPD was able to correctly identify and characterize all known disulfide bonded pairs. The method also proved sufficiently sensitive to identify and characterize several non-native disulfide-bound peptide pairs which were present in trace amounts. Photodissociation at 266 nm can be a valuable tool for disulfide bond identification and pair assignment in high-throughput proteomics studies.
Journal of the American Chemical Society | 2008
Jolene K. Diedrich; Ryan R. Julian
Site-specific fragmentation of peptides at phosphorylated serine or threonine residues is demonstrated. This radical directed cleavage is accomplished by a two-step procedure. First the phosphate is replaced with naphthalenethiol using well established Michael Addition chemistry. Second, the modified peptide is electrosprayed and subjected to irradiation at 266 nm. Absorption at naphthalene causes homolytic cleavage of the connecting carbon-sulfur bond yielding a radical in the beta-position. Subsequent rearrangement cleaves the peptide backbone yielding a d-type fragment. This chemistry is generally applicable as demonstrated by experiments with several different peptides. Assignment of phosphorylation sites is greatly facilitated by this approach, particularly for peptides containing multiple serine or threonine residues.
Analytical Chemistry | 2010
Jolene K. Diedrich; Ryan R. Julian
Described herein are several unique analytical applications utilizing mass spectrometry and the selective modification of the free thiol form of cysteine in both peptides and proteins by various quinones. This simple modification can be used to quantify the number of free or disulfide bound cysteines in a protein. In addition, quinone modification can also be used to easily probe the solvent accessibility of cysteine residues, which provides information about protein structure or folding state. Furthermore, the chromophoric properties of the quinone moiety can be leveraged for site specific photodissociation of the backbone. The photodissociation reveals both the presence and location of modified cysteine residues. For example, cleavage of the protein backbone of alpha-hemoglobin is observed selectively at a single cysteine out of 140 residues in the whole protein. This selective backbone fragmentation is accompanied by a parent ion mass loss, which is unique to the modifying quinone. When combined, this information can be used to determine both the presence and site of modification generated by naturally occurring molecules, such as dopamine, which can harness quinone chemistry to modify proteins.
Nature Communications | 2017
Liwei Cao; Jolene K. Diedrich; Daniel W. Kulp; Matthias Pauthner; Lin He; Sung-Kyu Robin Park; Devin Sok; Ching Yao Su; Claire Delahunty; Sergey Menis; Raiees Andrabi; Javier Guenaga; Erik Georgeson; Michael Kubitz; Yumiko Adachi; Dennis R. Burton; William R. Schief; John R. Yates; James C. Paulson
HIV-1 envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs) and the focus for design of an antibody-based HIV vaccine. The Env trimer is covered by ∼90N-linked glycans, which shield the underlying protein from immune surveillance. bNAbs to HIV develop during infection, with many showing dependence on glycans for binding to Env. The ability to routinely assess the glycan type at each glycosylation site may facilitate design of improved vaccine candidates. Here we present a general mass spectrometry-based proteomics strategy that uses specific endoglycosidases to introduce mass signatures that distinguish peptide glycosites that are unoccupied or occupied by high-mannose/hybrid or complex-type glycans. The method yields >95% sequence coverage for Env, provides semi-quantitative analysis of the glycosylation status at each glycosite. We find that most glycosites in recombinant Env trimers are fully occupied by glycans, varying in the proportion of high-mannose/hybrid and complex-type glycans.
Analytical Chemistry | 2015
Lin He; Jolene K. Diedrich; Yen-Yin Chu; John R. Yates
Extraction of data from the proprietary RAW files generated by Thermo Fisher mass spectrometers is the primary step for subsequent data analysis. High resolution and high mass accuracy data obtained by state-of-the-art mass spectrometers (e.g., Orbitraps) can significantly improve both peptide/protein identification and quantification. We developed RawConverter, a stand-alone software tool, to improve data extraction on RAW files from high-resolution Thermo Fisher mass spectrometers. RawConverter extracts full scan and MS(n) data from RAW files like its predecessor RawXtract; most importantly, it associates the accurate precursor mass-to-charge (m/z) value with the tandem mass spectrum. RawConverter accepts RAW data generated by either data-dependent acquisition (DDA) or data-independent acquisition (DIA). It generates output into MS1/MS2/MS3, MGF, or mzXML file formats, which fulfills the format requirements for most data identification and quantification tools. Using the tandem mass spectra extracted by RawConverter with corrected m/z values, 32.8%, 27.1%, and 84.1%, peptide spectra matches (PSMs) produce 17.4% (13.0%), 14.4% (11.5%), and 45.7% (36.2%) more peptide (protein) identifications than ProteoWizard, pXtract, and RawXtract, respectively. RawConverter is implemented in C# and is freely accessible at http://fields.scripps.edu/rawconv.
Analytical Chemistry | 2011
Jolene K. Diedrich; Ryan R. Julian
Identification of phosphorylation sites is of interest due to their importance in protein regulation; however, the identification of the exact sites of this modification is not always easily obtained due to the dynamic nature of phosphorylation and the challenges faced during mass spectrometric analysis. Herein we elaborate on our previous communication (Diedrich, J. K.; Julian, R. R. J. Am. Chem. Soc. 2008, 130, 12212-12213) describing a novel technique for assignment of phosphorylation in a site-specific and facile manner. Phosphorylation sites are selectively modified through β elimination followed by Michael addition chemistry to install a photolabile group. Photodissociation with 266 nm light yields homolytic cleavage at the modification site, generating a β radical which is poised to fragment the peptide backbone. Dissociation primarily yields d-type ions at the previously phosphorylated residue, allowing facile identification. Radical directed fragmentation also occurs in smaller abundances at neighboring residues. The mechanisms behind this selective radical fragmentation are presented and the utility is discussed. Fragmentation is shown to be independent of charge state allowing analysis of a wide variety of peptide sequences including peptides with multiple phosphorylation sites. A comparison of this technique is made with collision induced dissociation (CID) and electron capture dissociation (ECD) for representative peptides.
Nature Structural & Molecular Biology | 2013
Nicholas A. Lyons; Bryan R. Fonslow; Jolene K. Diedrich; John R. Yates; David O. Morgan
Sister-chromatid cohesion is established during S phase when Eco1 acetylates cohesin. In budding yeast, Eco1 activity falls after S phase due to Cdk1-dependent phosphorylation, which triggers ubiquitination by SCFCdc4. We show here that Eco1 degradation requires the sequential actions of Cdk1 and two additional kinases, Cdc7–Dbf4 and the GSK-3 homolog Mck1. These kinases recognize motifs primed by previous phosphorylation, resulting in an ordered sequence of three phosphorylation events on Eco1. Only the latter two phosphorylation sites are spaced correctly to bind Cdc4, resulting in strict discrimination between phosphates added by Cdk1 and by Cdc7. Inhibition of Cdc7 by the DNA damage response prevents Eco1 destruction, allowing establishment of cohesion after S phase. This elaborate regulatory system, involving three independent kinases and stringent substrate selection by a ubiquitin ligase, enables robust control of cohesion establishment during normal growth and after stress.
Cell Reports | 2014
Cristina Bartocci; Jolene K. Diedrich; Iliana Ouzounov; Julia Li; Andrea Piunti; Diego Pasini; John R. Yates; Eros Lazzerini Denchi
When telomeres become critically short, DNA damage response factors are recruited at chromosome ends, initiating a cellular response to DNA damage. We performed proteomic isolation of chromatin fragments (PICh) in order to define changes in chromatin composition that occur upon onset of acute telomere dysfunction triggered by depletion of the telomere-associated factor TRF2. This unbiased purification of telomere-associated proteins in functional or dysfunctional conditions revealed the dynamic changes in chromatin composition that take place at telomeres upon DNA damage induction. On the basis of our results, we describe a critical role for the polycomb group protein Ring1b in nonhomologous end-joining (NHEJ)-mediated end-to-end chromosome fusions. We show that cells with reduced levels of Ring1b have a reduced ability to repair uncapped telomeric chromatin. Our data represent an unbiased isolation of chromatin undergoing DNA damage and are a valuable resource to map the changes in chromatin composition in response to DNA damage activation.