Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonas Ståhle is active.

Publication


Featured researches published by Jonas Ståhle.


Glycobiology | 2015

Development of the ECODAB into a relational database for Escherichia coli O-antigens and other bacterial polysaccharides

Miguel A. Rojas-Macias; Jonas Ståhle; Thomas Lütteke; Göran Widmalm

Escherichia coli O-antigen database (ECODAB) is a web-based application to support the collection of E. coli O-antigen structures, polymerase and flippase amino acid sequences, NMR chemical shift data of O-antigens as well as information on glycosyltransferases (GTs) involved in the assembly of O-antigen polysaccharides. The database content has been compiled from scientific literature. Furthermore, the system has evolved from being a repository to one that can be used for generating novel data on its own. GT specificity is suggested through sequence comparison with GTs whose function is known. The migration of ECODAB to a relational database has allowed the automation of all processes to update, retrieve and present information, thereby, endowing the system with greater flexibility and improved overall performance. ECODAB is freely available at http://www.casper.organ.su.se/ECODAB/. Currently, data on 169 E. coli unique O-antigen entries and 338 GTs is covered. Moreover, the scope of the database has been extended so that polysaccharide structure and related information from other bacteria subsequently can be added, for example, from Streptococcus pneumoniae.


Methods of Molecular Biology | 2017

Databases and associated tools for glycomics and glycoproteomics

Frédérique Lisacek; Julien Mariethoz; Davide Alocci; Pauline M. Rudd; Jodie L. Abrahams; Matthew Campbell; Nicolle H. Packer; Jonas Ståhle; Göran Widmalm; Elaine Mullen; Barbara Adamczyk; Miguel A. Rojas-Macias; Chunsheng Jin; Niclas G. Karlsson

The access to biodatabases for glycomics and glycoproteomics has proven to be essential for current glycobiological research. This chapter presents available databases that are devoted to different aspects of glycobioinformatics. This includes oligosaccharide sequence databases, experimental databases, 3D structure databases (of both glycans and glycorelated proteins) and association of glycans with tissue, disease, and proteins. Specific search protocols are also provided using tools associated with experimental databases for converting primary glycoanalytical data to glycan structural information. In particular, researchers using glycoanalysis methods by U/HPLC (GlycoBase), MS (GlycoWorkbench, UniCarb-DB, GlycoDigest), and NMR (CASPER) will benefit from this chapter. In addition we also include information on how to utilize glycan structural information to query databases that associate glycans with proteins (UniCarbKB) and with interactions with pathogens (SugarBind).


Organic and Biomolecular Chemistry | 2015

Exploration of the active site of β4GalT7: modifications of the aglycon of aromatic xylosides.

Anna Siegbahn; Karin Thorsheim; Jonas Ståhle; Sophie Manner; Christoffer Hamark; Andrea Persson; Emil Tykesson; Katrin Mani; Gunilla Westergren-Thorsson; Göran Widmalm; Ulf Ellervik

Proteoglycans (PGs) are macromolecules that consist of long linear polysaccharides, glycosaminoglycan (GAG) chains, covalently attached to a core protein by the carbohydrate xylose. The biosynthesis of GAG chains is initiated by xylosylation of the core protein followed by galactosylation by the galactosyltransferase β4GalT7. Some β-d-xylosides, such as 2-naphthyl β-d-xylopyranoside, can induce GAG synthesis by serving as acceptor substrates for β4GalT7 and by that also compete with the GAG synthesis on core proteins. Here we present structure-activity relationships for β4GalT7 and xylosides with modifications of the aromatic aglycon, using enzymatic assays, cell studies, and molecular docking simulations. The results show that the aglycons reside on the outside of the active site of the enzyme and that quite bulky aglycons are accepted. By separating the aromatic aglycon from the xylose moiety by linkers, a trend towards increased galactosylation with increased linker length is observed. The galactosylation is influenced by the identity and position of substituents in the aromatic framework, and generally, only xylosides with β-glycosidic linkages function as good substrates for β4GalT7. We also show that the galactosylation ability of a xyloside is increased by replacing the anomeric oxygen with sulfur, but decreased by replacing it with carbon. Finally, we propose that reaction kinetics of galactosylation by β4GalT7 is dependent on subtle differences in orientation of the xylose moiety.


Journal of Computational Chemistry | 2016

CarbBuilder: Software for building molecular models of complex oligo- and polysaccharide structures.

Michelle Kuttel; Jonas Ståhle; Göran Widmalm

CarbBuilder is a portable software tool for producing three‐dimensional molecular models of carbohydrates from the simple text specification of a primary structure. CarbBuilder can generate a wide variety of carbohydrate structures, ranging from monosaccharides to large, branched polysaccharides. Version 2.0 of the software, described in this article, supports monosaccharides of both mammalian and bacterial origin and a range of substituents for derivatization of individual sugar residues. This improved version has a sophisticated building algorithm to explore the range of possible conformations for a specified carbohydrate molecule. Illustrative examples of models of complex polysaccharides produced by CarbBuilder demonstrate the capabilities of the software. CarbBuilder is freely available under the Artistic License 2.0 from https://people.cs.uct.ac.za/~mkuttel/Downloads.html.


Journal of Biological Chemistry | 2016

Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence

Carolina Fontana; Raquel Conde-Álvarez; Jonas Ståhle; Otto Holst; Maite Iriarte; Yun Zhao; Vilma Arce-Gorvel; Sean Hanniffy; Jean-Pierre Gorvel; Ignacio Moriyón; Göran Widmalm

The structures of the lipooligosaccharides from Brucella melitensis mutants affected in the WbkD and ManBcore proteins have been fully characterized using NMR spectroscopy. The results revealed that disruption of wbkD gives rise to a rough lipopolysaccharide (R-LPS) with a complete core structure (β-d-Glcp-(1→4)-α-Kdop-(2→4)[β-d-GlcpN-(1→6)-β-d-GlcpN-(1→4)[β-d-GlcpN-(1→6)]-β-d-GlcpN-(1→3)-α-d-Manp-(1→5)]-α-Kdop-(2→6)-β-d-GlcpN3N4P-(1→6)-α-d-GlcpN3N1P), in addition to components lacking one of the terminal β-d-GlcpN and/or the β-d-Glcp residues (48 and 17%, respectively). These structures were identical to those of the R-LPS from B. melitensis EP, a strain simultaneously expressing both smooth and R-LPS, also studied herein. In contrast, disruption of manBcore gives rise to a deep-rough pentasaccharide core (β-d-Glcp-(1→4)-α-Kdop-(2→4)-α-Kdop-(2→6)-β-d-GlcpN3N4P-(1→6)-α-d-GlcpN3N1P) as the major component (63%), as well as a minor tetrasaccharide component lacking the terminal β-d-Glcp residue (37%). These results are in agreement with the predicted functions of the WbkD (glycosyltransferase involved in the biosynthesis of the O-antigen) and ManBcore proteins (phosphomannomutase involved in the biosynthesis of a mannosyl precursor needed for the biosynthesis of the core and O-antigen). We also report that deletion of B. melitensis wadC removes the core oligosaccharide branch not linked to the O-antigen causing an increase in overall negative charge of the remaining LPS inner section. This is in agreement with the mannosyltransferase role predicted for WadC and the lack of GlcpN residues in the defective core oligosaccharide. Despite carrying the O-antigen essential in B. melitensis virulence, the core deficiency in the wadC mutant structure resulted in a more efficient detection by innate immunity and attenuation, proving the role of the β-d-GlcpN-(1→6)-β-d-GlcpN-(1→4)[β-d-GlcpN-(1→6)]-β-d-GlcpN-(1→3)-α-d-Manp-(1→5) structure in virulence.


Frontiers in Microbiology | 2018

Genomic Insertion of a Heterologous Acetyltransferase Generates a New Lipopolysaccharide Antigenic Structure in Brucella abortus and Brucella melitensis

Estrella Martínez-Gómez; Jonas Ståhle; Yolanda Gil-Ramírez; Amaia Zúñiga-Ripa; Mona Zaccheus; Ignacio Moriyón; Maite Iriarte; Göran Widmalm; Raquel Conde-Álvarez

Brucellosis is a bacterial zoonosis of worldwide distribution caused by bacteria of the genus Brucella. In Brucella abortus and Brucella melitensis, the major species infecting domestic ruminants, the smooth lipopolysaccharide (S-LPS) is a virulence factor. This S-LPS carries a N-formyl-perosamine homopolymer O-polysaccharide that is the major antigen in serodiagnostic tests and is required for virulence. We report that the Brucella O-PS can be structurally and antigenically modified using wbdR, the acetyl-transferase gene involved in N-acetyl-perosamine synthesis in Escherichia coli O157:H7. Brucella constructs carrying plasmidic wbdR expressed a modified O-polysaccharide but were unstable, a problem circumvented by inserting wbdR into a neutral site of chromosome II. As compared to wild-type bacteria, both kinds of wbdR constructs expressed shorter O-polysaccharides and NMR analyses showed that they contained both N-formyl and N-acetyl-perosamine. Moreover, deletion of the Brucella formyltransferase gene wbkC in wbdR constructs generated bacteria producing only N-acetyl-perosamine homopolymers, proving that wbdR can replace for wbkC. Absorption experiments with immune sera revealed that the wbdR constructs triggered antibodies to new immunogenic epitope(s) and the use of monoclonal antibodies proved that B. abortus and B. melitensis wbdR constructs respectively lacked the A or M epitopes, and the absence of the C epitope in both backgrounds. The wbdR constructs showed resistance to polycations similar to that of the wild-type strains but displayed increased sensitivity to normal serum similar to that of a per R mutant. In mice, the wbdR constructs produced chronic infections and triggered antibody responses that can be differentiated from those evoked by the wild-type strain in S-LPS ELISAs. These results open the possibilities of developing brucellosis vaccines that are both antigenically tagged and lack the diagnostic epitopes of virulent field strains, thereby solving the diagnostic interference created by current vaccines against Brucella.


Chemistry: A European Journal | 2017

Naphthyl thio- and carba-xylopyranosides for exploration of the active site of β-1,4-galactosyltransferase 7 (β4GalT7)

Karin Thorsheim; Daniel Willén; Emil Tykesson; Jonas Ståhle; Jean Pierre Praly; Sébastien Vidal; Magnus T. Johnson; Göran Widmalm; Sophie Manner; Ulf Ellervik

Xyloside analogues with substitution of the endocyclic oxygen atom by sulfur or carbon were investigated as substrates for β-1,4-galactosyltransferase 7 (β4GalT7), a key enzyme in the biosynthesis of glycosaminoglycan chains. The analogues with an endocyclic sulfur atom proved to be excellent substrates for β4GalT7, and were galactosylated approximately fifteen times more efficiently than the corresponding xyloside. The 5a-carba-β-xylopyranoside in the d-configuration proved to be a good substrate for β4GalT7, whereas the enantiomer in the l-configuration showed no activity. Further investigations by X-ray crystallography, NMR spectroscopy, and molecular modeling provided a rationale for the pronounced activity of the sulfur analogues. Favorable π-π interactions between the 2-naphthyl moiety and a tyrosine side chain of the enzyme were observed for the thio analogues, which open up for the design of efficient GAG primers and inhibitors.


Glycobiology | 2018

Elucidation of the O-antigen structure of Escherichia coli O63

Jonas Ståhle; Carolina Fontana; Andrej Weintraub; Göran Widmalm

The structure of the O-antigen polysaccharide (PS) from the Shiga-toxin producing Escherichia coli O63 has been elucidated using a combination of bioinformatics, component analyses and NMR spectroscopy. The O-antigen is comprised of tetrasaccharide repeating units with the following structure: →2)-β-d-Quip3N(d-allo-ThrAc)-(1→2)-β-d-Ribf-(1→4)-β-d-Galp-(1→3)-α-d-GlcpNAc-(1→ in which the N-acetylated d-allo-threonine is amide-linked to position 3 of the 3-amino-3-deoxy-d-Quip sugar residue. The presence of a predicted flippase and polymerase encoded in the O63 gene cluster is consistent with the Wzx/Wzy biosynthetic pathway and consequently the biological repeating unit has likely an N-acetyl-d-glucosamine residue at its reducing end. A bioinformatics approach based on predictive glycosyltransferase function present in ECODAB (E. coli O-antigen database) suggested the structural element β-d-Galp-(1→3)-d-GlcpNAc in the O-antigen. Notably, multiple gene sequence alignment of fdtA and qdtA from E. coli to that in E. coli O63 resulted in discrimination between the two, confirmation of the latter in E. coli O63, and consequently, together with qdtB, biosynthesis of dTDP-d-Quip3N. The E. coli O63 O-antigen polysaccharide differs in two aspects from that of E. coli O114 where the latter carries instead an l-serine residue, and the glycosidic linkage positions to and from the Quip3N residue are both changed. The structural characterization of the O63 antigen repeat supports the predicted functional assignment of the O-antigen cluster genes.


Archive | 2017

CHAPTER 15:NMR Chemical Shift Predictions and Structural Elucidation of Oligo- and Polysaccharides by the Computer Program CASPER

Jonas Ståhle; Göran Widmalm

Glycans are often linked to proteins or lipids in the form of glycoconjugates but these highly complex molecules also have biological functions as oligosaccharides per se. The limited dispersion in ...


BMC Genomics | 2014

Serotype-conversion in Shigella flexneri:identification of a novel bacteriophage, Sf101, from a serotype 7a strain

Richa Jakhetia; Aruna Marri; Jonas Ståhle; Göran Widmalm; Naresh K. Verma

Collaboration


Dive into the Jonas Ståhle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge