Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan H. Badger is active.

Publication


Featured researches published by Jonathan H. Badger.


Nature | 1997

The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus.

Hans-Peter Klenk; Rebecca A. Clayton; Jean-Francois Tomb; Owen White; Karen E. Nelson; Karen A. Ketchum; Robert J. Dodson; Michelle L. Gwinn; Erin Hickey; Jeremy Peterson; Delwood Richardson; Anthony R. Kerlavage; David E. Graham; Nikos Kyrpides; Robert D. Fleischmann; John Quackenbush; Norman H. Lee; Granger Sutton; Steven R. Gill; Ewen F. Kirkness; Brian A. Dougherty; Keith McKenney; Mark D. Adams; Brendan J. Loftus; Scott N. Peterson; Claudia I. Reich; Leslie K. McNeil; Jonathan H. Badger; Anna Glodek; Lixin Zhou

Archaeoglobus fulgidus is the first sulphur-metabolizing organism to have its genome sequence determined. Its genome of 2,178,400 base pairs contains 2,436 open reading frames (ORFs). The information processing systems and the biosynthetic pathways for essential components (nucleotides, amino acids and cofactors) have extensive correlation with their counterparts in the archaeon Methanococcus jannaschii . The genomes of these two Archaea indicate dramatic differences in the way these organisms sense their environment, perform regulatory and transport functions, and gain energy. In contrast to M. jannaschii , A. fulgidus has fewer restriction–modification systems, and none of its genes appears to contain inteins. A quarter (651 ORFs) of the A. fulgidus genome encodes functionally uncharacterized yet conserved proteins, two-thirds of which are shared with M. jannaschii (428 ORFs). Another quarter of the genome encodes new proteins indicating substantial archaeal gene diversity.


Nature | 2008

The Phaeodactylum genome reveals the evolutionary history of diatom genomes.

Chris Bowler; Andrew E. Allen; Jonathan H. Badger; Jane Grimwood; Kamel Jabbari; Alan Kuo; Uma Maheswari; Cindy Martens; Florian Maumus; Robert Otillar; Edda Rayko; Asaf Salamov; Klaas Vandepoele; Bank Beszteri; Ansgar Gruber; Marc Heijde; Michael Katinka; Thomas Mock; Klaus Valentin; Frederic Verret; John A. Berges; Colin Brownlee; Jean-Paul Cadoret; Chang Jae Choi; Sacha Coesel; Alessandra De Martino; J. Chris Detter; Colleen Durkin; Angela Falciatore; Jérome Fournet

Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one-fifth of the primary productivity on Earth. The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology. Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (∼40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.


Nature | 2010

The Ectocarpus genome and the independent evolution of multicellularity in brown algae

J. Mark Cock; Lieven Sterck; Pierre Rouzé; Delphine Scornet; Andrew E. Allen; Grigoris D. Amoutzias; Véronique Anthouard; François Artiguenave; Jean-Marc Aury; Jonathan H. Badger; Bank Beszteri; Kenny Billiau; Eric Bonnet; John H. Bothwell; Chris Bowler; Catherine Boyen; Colin Brownlee; Carl J. Carrano; Bénédicte Charrier; Ga Youn Cho; Susana M. Coelho; Jonas Collén; Erwan Corre; Corinne Da Silva; Ludovic Delage; Nicolas Delaroque; Simon M. Dittami; Sylvie Doulbeau; Marek Eliáš; Garry Farnham

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.


PLOS Biology | 2005

Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species.

Derrick E. Fouts; Emmanuel F. Mongodin; Robert E. Mandrell; William G. Miller; David A. Rasko; Jacques Ravel; Lauren M. Brinkac; Robert T. DeBoy; Craig T. Parker; Sean C. Daugherty; Robert J. Dodson; A. Scott Durkin; Ramana Madupu; Steven A. Sullivan; Jyoti Shetty; Mobolanle A Ayodeji; Alla Shvartsbeyn; Michael C. Schatz; Jonathan H. Badger; Claire M. Fraser; Karen E. Nelson

Sequencing and comparative genome analysis of four strains of Campylobacter including C. lari RM2100, C. upsaliensis RM3195, and C. coli RM2228 has revealed major structural differences that are associated with the insertion of phage- and plasmid-like genomic islands, as well as major variations in the lipooligosaccharide complex. Poly G tracts are longer, are greater in number, and show greater variability in C. upsaliensis than in the other species. Many genes involved in host colonization, including racR/S, cadF, cdt, ciaB, and flagellin genes, are conserved across the species, but variations that appear to be species specific are evident for a lipooligosaccharide locus, a capsular (extracellular) polysaccharide locus, and a novel Campylobacter putative licABCD virulence locus. The strains also vary in their metabolic profiles, as well as their resistance profiles to a range of antibiotics. It is evident that the newly identified hypothetical and conserved hypothetical proteins, as well as uncharacterized two-component regulatory systems and membrane proteins, may hold additional significant information on the major differences in virulence among the species, as well as the specificity of the strains for particular hosts.


Science | 2009

Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas.

Alexandra Z. Worden; Jae-Hyeok Lee; Thomas Mock; Pierre Rouzé; Melinda P. Simmons; Andrea Aerts; Andrew E. Allen; Marie L. Cuvelier; Evelyne Derelle; Meredith V. Everett; Elodie Foulon; Jane Grimwood; Heidrun Gundlach; Bernard Henrissat; Carolyn A. Napoli; Sarah M. McDonald; Micaela S. Parker; Stephane Rombauts; Aasf Salamov; Peter von Dassow; Jonathan H. Badger; Pedro M. Coutinho; Elif Demir; Inna Dubchak; Chelle Gentemann; Wenche Eikrem; Jill E. Gready; Uwe John; William Lanier; Erika Lindquist

Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.


Applied and Environmental Microbiology | 2009

Three Genomes from the Phylum Acidobacteria Provide Insight into the Lifestyles of These Microorganisms in Soils

Naomi L. Ward; Jean F. Challacombe; Peter H. Janssen; Bernard Henrissat; Pedro M. Coutinho; Martin Wu; Gary Xie; Daniel H. Haft; Michelle Sait; Jonathan H. Badger; Ravi D. Barabote; Brent Bradley; Thomas Brettin; Lauren M. Brinkac; David Bruce; Todd Creasy; Sean C. Daugherty; Tanja Davidsen; Robert T. DeBoy; J. Chris Detter; Robert J. Dodson; A. Scott Durkin; Anuradha Ganapathy; Michelle Gwinn-Giglio; Cliff Han; Hoda Khouri; Hajnalka Kiss; Sagar Kothari; Ramana Madupu; Karen E. Nelson

ABSTRACT The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N2 fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.


PLOS Genetics | 2008

Genomic Islands in the Pathogenic Filamentous Fungus Aspergillus fumigatus

Natalie D. Fedorova; Nora Khaldi; Vinita Joardar; Rama Maiti; Paolo Amedeo; Michael J. Anderson; Jonathan Crabtree; Joana C. Silva; Jonathan H. Badger; Ahmed Abdulrahman Albarraq; Sam Angiuoli; Howard Bussey; Paul Bowyer; Peter J. Cotty; Paul S. Dyer; Amy Egan; Kevin Galens; Claire M. Fraser-Liggett; Brian J. Haas; Jason M. Inman; Richard Kent; Sébastien Lemieux; Iran Malavazi; Joshua Orvis; Terry Roemer; Catherine M. Ronning; Jaideep Sundaram; Granger Sutton; Geoff Turner; J. Craig Venter

We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated “gene dumps” and, perhaps, simultaneously, as “gene factories”.


Nature Biotechnology | 2008

Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum

Marco van den Berg; Richard Albang; Kaj Albermann; Jonathan H. Badger; Jean-Marc Daran; Arnold J. M. Driessen; Carlos García-Estrada; Natalie D. Fedorova; Diana M. Harris; Wilbert H. M. Heijne; Vinita Joardar; Jan A. K. W. Kiel; Andriy Kovalchuk; Juan F. Martín; William C. Nierman; Jeroen G. Nijland; Jack T. Pronk; Johannes Andries Roubos; Ida J. van der Klei; Noël N. M. E. van Peij; Marten Veenhuis; Hans von Döhren; Christian Wagner; Jennifer R. Wortman; Roel A. L. Bovenberg

Industrial penicillin production with the filamentous fungus Penicillium chrysogenum is based on an unprecedented effort in microbial strain improvement. To gain more insight into penicillin synthesis, we sequenced the 32.19 Mb genome of P. chrysogenum Wisconsin54-1255 and identified numerous genes responsible for key steps in penicillin production. DNA microarrays were used to compare the transcriptomes of the sequenced strain and a penicillinG high-producing strain, grown in the presence and absence of the side-chain precursor phenylacetic acid. Transcription of genes involved in biosynthesis of valine, cysteine and α-aminoadipic acid—precursors for penicillin biosynthesis—as well as of genes encoding microbody proteins, was increased in the high-producing strain. Some gene products were shown to be directly controlling β-lactam output. Many key cellular transport processes involving penicillins and intermediates remain to be characterized at the molecular level. Genes predicted to encode transporters were strongly overrepresented among the genes transcriptionally upregulated under conditions that stimulate penicillinG production, illustrating potential for future genomics-driven metabolic engineering.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment.

Brian Palenik; Qinghu Ren; Chris L. Dupont; Garry Myers; John F. Heidelberg; Jonathan H. Badger; Ramana Madupu; William C. Nelson; Lauren M. Brinkac; Robert J. Dodson; A. Scott Durkin; Sean C. Daugherty; Stephen A Sullivan; Hoda Khouri; Yasmin Mohamoud; Rebecca A. Halpin; Ian T. Paulsen

Coastal aquatic environments are typically more highly productive and dynamic than open ocean ones. Despite these differences, cyanobacteria from the genus Synechococcus are important primary producers in both types of ecosystems. We have found that the genome of a coastal cyanobacterium, Synechococcus sp. strain CC9311, has significant differences from an open ocean strain, Synechococcus sp. strain WH8102, and these are consistent with the differences between their respective environments. CC9311 has a greater capacity to sense and respond to changes in its (coastal) environment. It has a much larger capacity to transport, store, use, or export metals, especially iron and copper. In contrast, phosphate acquisition seems less important, consistent with the higher concentration of phosphate in coastal environments. CC9311 is predicted to have differences in its outer membrane lipopolysaccharide, and this may be characteristic of the speciation of some cyanobacterial groups. In addition, the types of potentially horizontally transferred genes are markedly different between the coastal and open ocean genomes and suggest a more prominent role for phages in horizontal gene transfer in oligotrophic environments.


PLOS ONE | 2012

The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity

Nadine Ziemert; Sheila Podell; Kevin Penn; Jonathan H. Badger; Eric E. Allen; Paul R. Jensen

New bioinformatic tools are needed to analyze the growing volume of DNA sequence data. This is especially true in the case of secondary metabolite biosynthesis, where the highly repetitive nature of the associated genes creates major challenges for accurate sequence assembly and analysis. Here we introduce the web tool Natural Product Domain Seeker (NaPDoS), which provides an automated method to assess the secondary metabolite biosynthetic gene diversity and novelty of strains or environments. NaPDoS analyses are based on the phylogenetic relationships of sequence tags derived from polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, respectively. The sequence tags correspond to PKS-derived ketosynthase domains and NRPS-derived condensation domains and are compared to an internal database of experimentally characterized biosynthetic genes. NaPDoS provides a rapid mechanism to extract and classify ketosynthase and condensation domains from PCR products, genomes, and metagenomic datasets. Close database matches provide a mechanism to infer the generalized structures of secondary metabolites while new phylogenetic lineages provide targets for the discovery of new enzyme architectures or mechanisms of secondary metabolite assembly. Here we outline the main features of NaPDoS and test it on four draft genome sequences and two metagenomic datasets. The results provide a rapid method to assess secondary metabolite biosynthetic gene diversity and richness in organisms or environments and a mechanism to identify genes that may be associated with uncharacterized biochemistry.

Collaboration


Dive into the Jonathan H. Badger's collaboration.

Top Co-Authors

Avatar

Andrew E. Allen

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Hoda Khouri

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Ramana Madupu

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qinghu Ren

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Craig Venter

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

John P. McCrow

J. Craig Venter Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge